Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting 论文理解+机翻
背景:快速的城市化带来了人口的增长,并带来了巨大的流动性和挑战性。在这些挑战中,智能交通系统是一个重要领域,交通预测是城市交通管理的重要部分。问题描述:论文关注的是如何准确的预测未来的交通状况,例如交通流量和速度、乘客需求等。方法:传统的预测方法采用时间序列模型,它们无法捕捉到大规模交通的非线性相关性和复杂的时空模式。论文提出了一种叫做AdaptiveGraphConvolutionalRecur