E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
机器学习-spark
机器学习
——分类、回归、聚类、LASSO回归、Ridge回归(自用)
纠正自己的误区:
机器学习
是一个大范围,并不是一个小的方向,比如:线性回归预测、卷积神经网络和强化学都是
机器学习
算法在不同场景的应用。
代码的建筑师
·
2025-03-24 02:02
模型学习
模型训练
机器学习
机器学习
分类
回归
正则化项
LASSO
Ridge
朴素
量化交易系统中如何处理
机器学习
模型的训练和部署?
microPythonPython最小内核源码解析NI-motion运动控制c语言示例代码解析python编程示例系列python编程示例系列二python的Web神器Streamlit如何应聘高薪职位量化交易系统中,
机器学习
模型的训练和部署需要遵循一套严密的流程
openwin_top
·
2025-03-24 01:27
量化交易系统开发
机器学习
人工智能
量化交易
spark
explain如何使用
在
Spark
中,explain是分析SQL或DataFrame执行计划的核心工具,通过不同模式可展示查询优化和执行的详细信息,默认情况下,这个语句只提供关于物理计划的信息。
fzip
·
2025-03-24 00:14
Spark
spark
执行计划
【
Spark
】查询优化中分区(Partitioning)和分桶(Bucketing)是什么关系?什么时候应当分区,什么时候应当分桶?
在学习
Spark
的过程中,分区和分桶乍一看很像,都能为了计算加速,但是仔细一想,一查还是有些差异的,甚至说差异很大。那么具体有什么差异点,有什么相同点。我做出了如下的整理,供大家参考,欢迎指正。
petrel2015
·
2025-03-23 23:37
spark
大数据
分布式
数据库
【深度学习与大模型基础】第7章-特征分解与奇异值分解
一、特征分解特征分解(EigenDecomposition)是线性代数中的一种重要方法,广泛应用于计算机行业的多个领域,如
机器学习
、图像处理和数据分析等。
lynn-66
·
2025-03-23 23:37
深度学习与大模型基础
算法
机器学习
人工智能
【论文阅读】Persistent Homology Captures the Generalization of Neural Networks Without A Validation Set
比较同调收敛性与神经网络的验证精度变化趋势摘要
机器学习
从业者通常通过监控模型的某些指标来估计其泛化误差,并在训练数值收敛之前停止训练,以防止过拟合。
开心星人
·
2025-03-23 22:34
论文阅读
论文阅读
震惊! “深度学习”都在学习什么
常见的
机器学习
分类算法俗话说三个臭皮匠胜过诸葛亮这里面集成学习就是将单一的算法弱弱结合算法融合用投票给特征值加权重AdaBoost集成学习算法通过迭代训练一系列弱分类器,给予分类错误样本更高权重,使得后续弱分类器更关注这些样本
扉间798
·
2025-03-23 22:01
深度学习
学习
人工智能
【论文阅读】Availability Attacks Create Shortcuts
还得重复读这一篇论文,有些地方理解不够透彻可用性攻击通过在训练数据中添加难以察觉的扰动,使数据无法被
机器学习
算法利用,从而防止数据被未经授权地使用。
开心星人
·
2025-03-23 22:01
论文阅读
论文阅读
机器学习
Day01人工智能概述
1.什么样的程序适合在gpu上运行计算密集型的程序:此类程序主要运算集中在寄存器,寄存器读写速度快,而GPU拥有强大的计算能力,能高效处理大量的寄存器运算,因此适合在GPU上运行。像科学计算中的数值模拟、密码破解等场景的程序,都属于计算密集型,在GPU上运行可大幅提升运算速度。易于并行的程序:GPU采用SIMD架构,有众多核心,同一时间每个核心适合做相同的事。易于并行的程序能充分利用GPU这一特性
山北雨夜漫步
·
2025-03-23 22:58
机器学习
人工智能
机器学习
:让计算机学会思考的艺术
目录什么是
机器学习
?
机器学习
的基本步骤常见的
机器学习
算法
机器学习
的实际应用如何入门
机器学习
?结语在当今数字化时代,
机器学习
(MachineLearning,ML)已经成为一个炙手可热的话题。
平凡而伟大.
·
2025-03-23 21:19
机器学习
机器学习
人工智能
机器学习
中的 K-均值聚类算法及其优缺点
K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本分成K个簇。其基本原理是将所有样本点划分到K个簇使得簇内样本点之间的距离尽可能接近,而不同簇之间的距离尽可能远。算法流程如下:随机选择K个样本点作为初始的聚类中心。将每个样本点分配到与其最近的聚类中心所在的簇。更新每个簇的聚类中心为该簇所有样本点的平均值。重复第2步和第3步,直到聚类中心不再变化或者达到最大迭代次数。优点:简单且易于实现。
平凡而伟大.
·
2025-03-23 21:18
机器学习
机器学习
算法
均值算法
一文讲清楚深度学习和
机器学习
目录1.定义
机器学习
(MachineLearning,ML)深度学习(DeepLearning,DL)2.工作原理
机器学习
深度学习3.应用场景
机器学习
深度学习4.主要区别5.为什么选择深度学习?
平凡而伟大.
·
2025-03-23 21:18
机器学习
人工智能
深度学习
机器学习
人工智能
py
spark
学习rdd处理数据方法——学习记录
python黑马程序员"""文件,按JSON字符串存储1.城市按销售额排名2.全部城市有哪些商品类别在售卖3.上海市有哪些商品类别在售卖"""frompy
spark
import
Spark
Conf,
Spark
Contextimportosimportjsonos.environ
亭午
·
2025-03-23 20:12
学习
机器学习
knnlearn1
importmatplotlib.pyplotaspltimportnumpyasnpimportoperator#定义一个函数用于创建数据集defcreateDataSet():#定义特征矩阵,每个元素是一个二维坐标点,代表不同策略数据点的坐标group=np.array([[20,3],[15,5],[18,1],[5,17],[2,15],[3,20]])#定义每个数据点对应的标签,用于区分
XW-ABAP
·
2025-03-23 19:07
机器学习
机器学习
人工智能
基于 MySQL 和 Spring Boot 的在线论坛管理系统设计与实现
markdownCopy✌全网粉丝20W+,csdn特邀作者、博客专家、CSDN[新星计划]导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、pyhton、
机器学习
技术领域和毕业项目实战
城南|阿洋-计算机从小白到大神
·
2025-03-23 19:36
mysql
spring
boot
数据库
零基础入门
机器学习
:用Scikit-learn实现鸢尾花分类
适合人群:
机器学习
新手|数据分析爱好者|需快速展示案例的学生一、引言:为什么要学这个案例?目的:明确
机器学习
解决什么问题,建立学习信心。
机器学习
定义:让计算机从数据中自动学习规律(如分类鸢尾花品种)。
藍海琴泉
·
2025-03-23 19:31
机器学习
scikit-learn
分类
机器学习
--DBSCAN聚类算法详解
目录引言1.什么是DBSCAN聚类?2.DBSCAN聚类算法的原理3.DBSCAN算法的核心概念3.1邻域(Neighborhood)3.2核心点(CorePoint)3.3直接密度可达(DirectlyDensity-Reachable)3.4密度可达(Density-Reachable)3.5密度相连(Density-Connected)4.DBSCAN算法的步骤5.DBSCAN算法的优缺点5
2201_75491841
·
2025-03-23 18:30
机器学习
算法
聚类
人工智能
【
机器学习
】
机器学习
工程实战-第3章 数据收集和准备
上一章:第2章项目开始前文章目录3.1关于数据的问题3.1.1数据是否可获得3.1.2数据是否相当大3.1.3数据是否可用3.1.4数据是否可理解3.1.5数据是否可靠3.2数据的常见问题3.2.1高成本3.2.2质量差3.2.3噪声(noise)3.2.4偏差(bias)3.2.5预测能力低(lowpredictivepower)3.2.6过时的样本3.2.7离群值3.2.8数据泄露/目标泄漏3
腊肉芥末果
·
2025-03-23 18:28
机器学习工程实战
机器学习
人工智能
机器学习
实战 第一章
机器学习
基础
第一章
机器学习
1.1何谓
机器学习
1.2关键术语1.3
机器学习
的主要任务1.4如何选择合适的算法1.5开发
机器学习
应用程序的步骤1.6Python语言的优势1.1何谓
机器学习
1、简单地说,
机器学习
就是把无序的数据转换成有用的信息
LuoY、
·
2025-03-23 18:27
Machine
Learning
机器学习
算法
人工智能
数据挖掘实战-基于
机器学习
的垃圾邮件检测模型
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍
艾派森
·
2025-03-23 18:26
数据挖掘实战合集
数据挖掘
机器学习
人工智能
python
集成学习(随机森林)
只要单分类器的表现不太差,集成学习的结果总是要好于单分类器的二、Bagging集成原理分类圆形和长方形三、随机森林在
机器学习
中,随机森林是
herry57
·
2025-03-23 18:24
数学建模
大数据
随机森林
集成学习
【
机器学习
】朴素贝叶斯入门:从零到垃圾邮件过滤实战
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
吴师兄大模型
·
2025-03-23 18:22
0基础实现机器学习入门到精通
机器学习
人工智能
朴素贝叶斯
深度学习
pytorch
sklearn
开发语言
【
机器学习
】
机器学习
工程实战-第2章 项目开始前
上一章:第1章概述文章目录2.1
机器学习
项目的优先级排序2.1.1
机器学习
的影响2.1.2
机器学习
的成本2.2估计
机器学习
项目的复杂度2.2.1未知因素2.2.2简化问题2.2.3非线性进展2.3确定
机器学习
项目的目标
腊肉芥末果
·
2025-03-23 18:21
机器学习工程实战
机器学习
人工智能
机器学习
怎么做特征工程
一、特征工程通俗解释特征工程就像厨师做菜前的食材处理:原始数据是“生肉和蔬菜”,特征工程是“切块、腌制、调料搭配”,目的是让
机器学习
模型(食客)更容易消化吸收,做出更好预测(品尝美味)。
全栈你个大西瓜
·
2025-03-23 17:47
人工智能
机器学习
人工智能
特征工程
数据预处理
特征变换
特征降维
特征构造
【
机器学习
】
机器学习
四大分类
机器学习
的方法主要可以分为四大类,根据学习方式和数据标注情况进行分类:1.监督学习(SupervisedLearning)特点:有标注数据(即训练数据有明确的输入(X)和输出(Y))。
藓类少女
·
2025-03-23 17:16
机器学习
机器学习
分类
人工智能
数据湖Iceberg、Hudi和Paimon比较_数据湖框架对比(1)
ApacheIcebergApacheHudiApachePaimonSchemaEvolutionALLback-compatibleback-compatibleSelf-definedschemaobjectYESNO(
spark
-schema
2301_79098963
·
2025-03-23 17:45
程序员
知识图谱
人工智能
机器学习
——KNN超参数
sklearn.model_selection.GridSearchCV是scikit-learn中用于超参数调优的核心工具,通过结合交叉验证和网格搜索实现模型参数的自动化优化。以下是详细介绍:一、功能概述GridSearchCV在指定参数网格上穷举所有可能的超参数组合,通过交叉验证评估每组参数的性能,最终选择最优参数组合。其核心价值在于:自动化调参:替代手动参数调试,提升效率3。交叉验证支持:通
练习AI两年半
·
2025-03-23 17:44
机器学习
人工智能
深度学习
重要重要!!fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义
fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义Fisher信息矩阵(FisherInformationMatrix,FIM)用于衡量模型参数估计的不确定性,其计算和更新在统计学、
机器学习
和优化中具有重要作用
ZhangJiQun&MXP
·
2025-03-23 14:20
教学
2021
论文
2024大模型以及算力
矩阵
概率论
线性代数
windows
微信
机器学习
Apache大数据旭哥优选大数据选题
售后态度和技术都很重要定制按需求做要求不高就实惠一点定制需提前沟通好怎么做,这样才能避免不必要的麻烦python、flask、Django、mapreduce、mysqljava、springboot、vue、echarts、hadoop、
spark
Apache大数据旭
·
2025-03-23 13:12
大数据定制选题
java
hadoop
spark
开发语言
idea
hive
数据库架构
景联文科技提供高质量文本标注服务,驱动AI技术发展
文本标注是自然语言处理(NLP)领域的一个重要环节,它通过为文本的不同部分提供具体的含义和上下文信息,增强
机器学习
和深度学习模型对文本内容的理解能力。
景联文科技
·
2025-03-23 10:52
科技
人工智能
景联文科技:以高质量数据标注推动人工智能领域创新与发展
在当今这个由数据驱动的时代,高质量的数据标注对于推动
机器学习
、自然语言处理(NLP)、计算机视觉等领域的发展具有不可替代的重要性。
景联文科技
·
2025-03-23 09:45
科技
人工智能
数据标注
客服机器人怎么才能精准的回答用户问题?
意图分类:通过
机器学习
模型(如BERT、Transformer)将问题归类(如“售后”“支付”)。上下文理解记录对
玩人工智能的辣条哥
·
2025-03-23 09:13
AI面试
机器人
客服机器人
OpenCV 4.2.0与扩展模块安装与应用指南
本文还有配套的精品资源,点击获取简介:OpenCV4.2.0是一个先进的计算机视觉库,包含了图像处理、计算机视觉和
机器学习
算法。
土城三富
·
2025-03-23 08:35
OpenCV ML 模块使用指南
一、模块概述OpenCV的ML模块提供了丰富的
机器学习
算法,可用于解决各种计算机视觉和数据分析问题。
ice_junjun
·
2025-03-23 07:02
OpenCV
opencv
人工智能
计算机视觉
强化学习中策略网络模型设计与优化技巧
I.引言强化学习(ReinforcementLearning,RL)是一种通过与环境交互,学习如何采取行动以最大化累积奖励的
机器学习
方法。
数字扫地僧
·
2025-03-23 07:57
计算机视觉
深度学习
基于Python编程语言实现“
机器学习
”,用于车牌识别项目
基于Python的验证码识别研究与实现1.摘要验证码的主要目的是区分人类和计算机,用来防止自动化脚本程序对网站的一些恶意行为,目前绝大部分网站都利用验证码来阻止恶意脚本程序的入侵。验证码的自动识别对于减少自动登录时长,识别难以识别的验证码图片有着重要的作用。对验证码图像进行灰度化、二值化、去离散噪声、字符分割、归一化、特征提取、训练和字符识别等过程可以实现验证码自动识别。首先将原图片进行灰度化处理
我的sun&shine
·
2025-03-23 04:57
Python
python
机器学习
计算机视觉
Azure Delta Lake、Databricks和Event Hubs实现实时欺诈检测
AzureEventHubs/Kafka摄入实时数据,通过DeltaLake实现Exactly-Once语义,实时欺诈检测(流数据写入DeltaLake,批处理模型实时更新),以及具体实现的详细步骤和关键Py
Spark
weixin_30777913
·
2025-03-23 03:12
azure
云计算
DS/ML:数据科学技术之数据科学生命周期(四大层次+
机器学习
六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略
DS/ML:数据科学技术之数据科学生命周期(四大层次+
机器学习
六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略导读:本文章是博主在数据科学和
机器学习
领域,先后实战过几百个应用案例之后的精心总结
一个处女座的程序猿
·
2025-03-23 03:41
资深文章(前沿/经验/创新)
DataScience
ML
数据科学
数据科学的生命周期
机器学习
给普通人看的深度学习说明书:用快递系统理解AI如何思考
第一章:理解AI的思维方式(快递版)1.1快递分拣站的故事假设你管理一个快递分拣站:传统方法:手动制定规则(比如根据邮编分拣)
机器学习
:观察老员工的分拣记录,总结规律深度学习:搭建自动分拣流水线,自主发现隐藏规则
嵌入式Jerry
·
2025-03-23 00:23
Python
AI
人工智能
深度学习
简单理解
机器学习
中top_k、top_p、temperature三个参数的作用
在
机器学习
中,top_k、top_p和temperature是用于控制生成模型(如语言模型)输出质量的参数,尤其在文本生成任务中常见。
无级程序员
·
2025-03-23 00:53
机器学习
人工智能
小白零基础学数学建模系列-引言与课程目录
第一周:数学建模基础与工具第二周:高级数学建模技巧与应用第三周:
机器学习
基础与数据处理第四周:监督学习与无监督学习算法第五周:神经网络二、学完本专辑能收获到什么?三、适合什么样的人群学习?
川川菜鸟
·
2025-03-22 23:47
数学建模小白到精通系列
数学建模
探索数据安全新境界:Apache
Spark
SQL Ranger Security插件深度揭秘
探索数据安全新境界:Apache
Spark
SQLRangerSecurity插件深度揭秘项目地址:https://gitcode.com/gh_mirrors/sp/
spark
-ranger随着大数据的爆炸性增长
乌昱有Melanie
·
2025-03-22 23:44
初始OpenCV
OpenCV提供了大量的计算机视觉算法和图像处理工具,广泛应用于图像和视频的处理、分析以及
机器学习
领域。所以学习人计算机视觉或者图像处理方面的知识,OpenCV是一个要重点学习的工具库。
指尖下的技术
·
2025-03-22 22:41
OpenCV
opencv
人工智能
计算机视觉
机器学习
结合伏羲模型高精度多尺度气象分析与降尺度实现
随着人工智能的发展,
机器学习
技术在气象预报领域展现出巨大潜力。本文详细探讨如何结合
机器学习
(ML)和伏羲模型进行高精度多尺度气象模拟分析,并提供详细的实现步骤和相关代码。
Hardess-god
·
2025-03-22 21:07
WRF
算法
人工智能
基于ChatGPT、GIS与Python
机器学习
的地质灾害风险评估、易发性分析、信息化建库及灾后重建高级实践
第一章、ChatGPT、DeepSeek大语言模型提示词与地质灾害基础及平台介绍【基础实践篇】1、什么是大模型?大模型(LargeLanguageModel,LLM)是一种基于深度学习技术的大规模自然语言处理模型。代表性大模型:GPT-4、BERT、T5、ChatGPT等。特点:多任务能力:可以完成文本生成、分类、翻译、问答等任务。上下文理解:能理解复杂的上下文信息。广泛适配性:适合科研、教育、行
weixin_贾
·
2025-03-22 20:59
防洪评价
风险评估
滑坡
泥石流
地质灾害
基于Azure云平台构建实时数据仓库
设计Azure云架构方案实现AzureDeltaLake和AzureDatabricks,结合电商网站的流数据,构建实时数据仓库,支持T+0报表(如电商订单分析),具以及具体实现的详细步骤和关键Py
Spark
weixin_30777913
·
2025-03-22 18:15
云计算
azure
开发语言
spark
python
人脸识别的一些代码
1、cv2入门函数imread及其相关操作2、(详解)opencv里的cv2.resize改变图片大小Python3、
机器学习
之人脸识别face_recognition使用4、使用face_recognition
饿了就干饭
·
2025-03-22 18:44
CV相关
人脸识别
探索Python中的集成方法:Stacking
在
机器学习
领域,Stacking是一种高级的集成学习方法,它通过将多个基本模型的预测结果作为新的特征输入到一个元模型中,从而提高整体模型的性能和鲁棒性。
Echo_Wish
·
2025-03-22 15:19
Python
笔记
Python
算法
python
开发语言
【Python】 Stacking: 强大的集成学习方法
我们都找到天使了说好了心事不能偷藏着什么都一起做幸福得没话说把坏脾气变成了好沟通我们都找到天使了约好了负责对方的快乐阳光下的山坡你素描的以后怎么抄袭我脑袋想的薛凯琪《找到天使了》在
机器学习
中,单一模型的性能可能会受到其局限性和数据的影响
音乐学家方大刚
·
2025-03-22 15:19
Python
python
集成学习
开发语言
Stacking算法:集成学习的终极武器
Stacking算法:集成学习的终极武器在
机器学习
的竞技场中,集成学习方法以其卓越的性能而闻名。其中,Stacking(堆叠泛化)作为一种高级集成技术,更是被誉为“集成学习的终极武器”。
civilpy
·
2025-03-22 14:16
算法
集成学习
机器学习
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他