【深度学习实验】网络优化与正则化(五):数据预处理详解——标准化、归一化、白化、去除异常值、处理缺失值
文章目录一、实验介绍二、实验环境1.配置虚拟环境2.库版本介绍三、优化算法0.导入必要的库1.随机梯度下降SGD算法a.PyTorch中的SGD优化器b.使用SGD优化器的前馈神经网络2.随机梯度下降的改进方法a.学习率调整b.梯度估计修正3.梯度估计修正:动量法Momentum4.自适应学习率5.Adam算法四、参数初始化五、数据预处理1.标准化2.归一化3.白化4.去除异常值5.处理缺失值6.