《Towards Robust Monocular Depth Estimation:Mixing Datasets for Zero-shot Cross-dataset Transfer》论文笔记
参考代码:MiDaS1.概述导读:这篇文章提出了一种监督的深度估计方法,其中使用一些很有价值的策略使得最后深度估计的结果具有较大提升。具体来讲文章的策略可以归纳为:1)使用多个深度数据集(各自拥有不同的scale和shift属性)加入进行训练,增大数据量与实现场景的互补;2)提出了一种scale-shiftinvariable的loss用于去监督深度的回归过程,从而使得可以更加有效使用现有数据;3