- 传统推荐算法库使用--mahout初体验
Huterox
推荐算法算法机器学习
文章目录前言环境准备调用混合总结前言郑重声明:本博文做法仅限毕设糊弄老师使用,不建议生产环境使用!!!老项目缝缝补补又是三年,本来是打算直接重写写个社区然后给毕设使用的。但是怎么说呢,毕竟毕设的主角不是xx社区,这个社区是为我的编译器服务的,为了推广这个编译器,然后我才做了这个社区。然而不幸的是,开题答辩的时候,各位“专家”叫我以xx社区为主,听起来高级。于是没有办法,我只能强行做个社区,怎么做呢
- 基于音乐/电影/图书的协同过滤推荐算法代码实现
74b3a3e489d4
基于音乐/电影/图书的协同过滤推荐算法代码实现一、开发工具及使用技术MyEclipse10、jdk1.7、tomcat7、jsp、javascript、jquery、bootstrap、webuploader、layer、ssh、mysql、navicat、mahoutAPI等。二、开发过程1、本文主要介绍基于音乐的协同过滤推荐算法代码实现,电影、图书等推荐原理相同。2、本文使用的推荐算法有:基于
- Hadoop 大数据技术原理与应用
kk8_
hadoop大数据hdfs
Hadoop大数据技术原理与应用大数据概述定义特征大量,多样,高速,价值研究意义应用场景医疗,金融,零售Hadoop概述历史优势扩容能力强,成本低,高效率,可靠性,高容错Hadoop生态分布式存储系统(HDFS)分布式计算框架(MapReduce)资源管理(YARN)数据迁移(Sqoop)数据挖掘算法库(Mahout)分布式数据库(HBase)分布式协调服务(Zookeeper)数据仓库(Hive
- 【大数据分析与挖掘技术】概述
Francek Chen
大数据技术基础数据分析数据挖掘Mahout
目录一、数据挖掘简介(一)数据挖掘对象(二)数据挖掘流程(三)数据挖掘的分析方法(四)经典算法二、Mahout(一)Mahout简介(二)主要特性(三)Mahout安装与配置一、数据挖掘简介需要是发明之母。近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。获取的信息和知识可以广泛用于各种应用,包括商务管理,生产控制,市
- 【大数据分析与挖掘技术】Mahout推荐算法
Francek Chen
大数据技术基础数据分析人工智能数据挖掘Mahout
目录一、推荐的定义与评估(一)推荐的定义(二)推荐的评估二、Mahout中的常见推荐算法(一)基于用户的推荐算法(二)基于物品的推荐算法(三)基于SVD的推荐算法(四)基于线性插值的推荐算法(五)基于聚类的推荐算法三、对GroupLens数据集进行推荐与评价(一)如何使用推荐器进行推荐(二)如何评估推荐器的好坏推荐是Mahout机器学习算法的主题之一,它极大地渗透到了人们日常生活的方方面面,比如,
- 计算机毕业设计之全网独家Spark租房爬虫数据分析与推荐系统 租房大数据 租房app 租房数据分析 租房爬虫 房源推荐系统 房源数据分析 房源可视化
haochengxu2022
数据分析爬虫推荐系统spark爬虫数据分析推荐系统
一、网站·登录与注册、注销·短信验证码修改密码·我的信息:身份证实名认证·租房业务流程(预约+看房+支付+完成+评价)、进度步骤条展示·支付宝沙箱支付·房屋浏览、中介信息查看·房屋推荐(基于mahout协同过滤算法)·房屋评价、点赞与收藏二、后端·统计主页、个人信息(带头像上传)、权限管理、用户管理、资讯管理、通知管理、日志管理、评论管理、轮播图管理、房屋管理、中介管理、订单管理。·中介权限可以登
- 推荐系统中协同过滤算法实现分析
weixin_33853794
人工智能python数据库
2019独角兽企业重金招聘Python工程师标准>>>原创博客,欢迎转载,转载请注明:http://my.oschina.net/BreathL/blog/62519最近研究Mahout比较多,特别是里面协同过滤算法;于是把协同过滤算法的这个实现思路与数据流程,总结了一下,以便以后对系统做优化时,有个清晰的思路,这样才能知道该如何优化且优化后数据亦能正确。推荐中的协同过滤算法简单说明下:首先,通过
- 大数据分析- 基于Hadoop/Mahout的大数据挖掘
shenmanli
大数据hadoop数据挖掘行业应用开发人员
随着互联网、移动互联网和物联网的发展,我们已经切实地迎来了一个大数据的时代。大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求。目前对大数据的分析工具,首选的是Hadoop平台。Hadoop在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。一、培训对象1,系统架构师、系
- “大数据分析挖掘-基于Hadoop/Mahout/Mllib的大数据挖掘(含Spark、Storm和Docker应用介绍)”培训
shenmanli
培训课程公开课企业培训大数据hadoopspark
随着互联网、移动互联网和物联网的发展,我们已经切实地迎来了一个大数据的时代。大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求。目前对大数据的分析工具,首选的是Hadoop/Yarn平台。Hadoop/Yarn在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。为解决广大
- springboot集成mahout实现简单基于协同过滤算法的文章推荐算法
程序个人练习生
开源项目学习算法springboot推荐算法
文章目录参考文章前言1.建表并且生成一些数据首先,建立一个用户文章操作表(user_article_operation)使用casewhen语句简单统计数据2.代码与测试只需要根据表生成相应实体类(注意要加一个value属性来存储分数)主要代码如下,其实就两个方法userArticleOperationMapper.getAllUserPreference()方法收集数据mapper文件如下测试算
- java电影推荐系统_基于Mahout的电影推荐系统
语文乌托邦
java电影推荐系统
1.Mahout简介ApacheMahout是ApacheSoftwareFoundation(ASF)旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。经典算法包括聚类、分类、协同过滤、进化编程等等,并且,在Mahout的最近版本中还加入了对ApacheHadoop的支持,使这些算法可以更高效的运行在云计算环境中。2.Taste简介T
- mahout 源码解析之聚类--聚类迭代模型
theonlytank2011
数据挖掘mahout源码mahout源码解析
在前面讲聚类策略时,包org.apache.mahout.clustering.iterator里面还有几个类没有进行讲解,这次做下收尾工作。ClusterIterator利用ClusterClassifier和指定的迭代次数将样本进行聚类。其中有三个具体的函数。iterate主要对内存中的数据进行聚类,输入就为一个Vector类型的迭代器。publicClusterClassifieritera
- 理论学习--【Hadoop生态原理学习】
zenas_yuan
Hadoophadoop
一、Hadoop原理1.核心:HDFS(存储)、MapReduce(分析)解决大量数据存储与处理的问题离线分析:hive实现查询:hbaseBI分析:Mahout2.版本1.0mapreduce还进行资源调度2.0mapreduce=yarn(资源调度)+mapreduce(进行计算运行在yarn上),HDfs:nn,ha2.1.2yarn还支持strom、spark、。。选择考虑因素:是否开源、
- 推荐系统-基于物品协同过滤算法代码实现
Moutai码农
大数据推荐系统算法推荐算法大数据spark
1、简介当前Spark没有像mahout那样,严格区分基于物品的协同过滤推荐(ItemCF)和基于用户的协同过滤推荐(UserCF),只有基于模型的协同过滤推荐算法ALS(model-basedCF)。但ALS算法对于一些特定的问题(用户数量较小的场景,以及物品数量明显小于用户数量的场景),效果并不理想,不像mahout提供了各种推荐算法选择。为了充分利用spark在速度上带来的提升同时为满足一些
- java+jsp+mysql实现在线电影推荐系统movieCFWeb mahout实现基于用户的协同过滤推荐算法 基于项目的协同过滤推荐算法
74b3a3e489d4
java+jsp+mysql实现在线电影推荐系统movieCFWeb一、项目简介http://localhost:8080/movieCFWeb/前台http://localhost:8080/movieCFWeb/admin后台自定义数据,mahout实现基于用户的协同过滤推荐算法前台包含用户注册、登录、搜索电影、分页、电影详情、评分、修改信息、评分列表、推荐电影等功能后台包括用户、电影、评分、
- 2.3 初探Hadoop世界
howard2005
数据清洗和预处理大数据离线分析hadoop大数据分布式
文章目录零、学习目标一、导入新课二、新课讲解(一)Hadoop的前世今生1、Google处理大数据三大技术2、Hadoop如何诞生3、Hadoop主要发展历程(二)Hadoop的优势1、扩容能力强2、成本低3、高效率4、可靠性5、高容错性(三)Hadoop的生态体系1、HDFS分布式文件系统2、MapReduce分布式计算框架3、Yarn资源管理框架4、Sqoop数据迁移工具5、Mahout数据挖
- 「大数据集群的搭建和使用」背景知识:大数据Hadoop生态圈介绍
优秀的Athena在休息
大数据集群的搭建和使用大数据hadoop分布式
目录一、Hadoop简介二、Hadoop的运行模式1.单机模式2.伪分布式模式3.完全分布式模式三、Hadoop生态圈组件1.HDFS2.MapReduce3.YARN4.Hive5.Pig6.HBase7.HCatalog8.Avro9.Thrift10.Drill11.Mahout12.Sqoop13.Flume14.Ambari15.Zookeeper四、Hadoop优缺点五、Hadoop学
- 【大数据】Hadoop 生态系统及其组件
G皮T
#Hadoophadoopbigdata大数据hdfshivemapreduceyarn
Hadoop生态系统及其组件1.Hadoop生态系统的组成2.Hadoop生态系统简介2.1HDFS2.2MapReduce2.3YARN2.4Hive2.5Pig2.6HBase2.7HCatalog2.8Avro2.9Thrift2.10Drill2.11Mahout2.12Sqoop2.13Flume2.14Ambari2.15Zookeeper2.16Oozie1.Hadoop生态系统的组
- 26Hbase介绍及其数据模型和架构(hbase学习1)
文茶君
Hbase介绍Hadoop生态系统spark已经替代mahouthbase简介:非关系型数据库知识面扩展cassandra、hbase、mongodb(文档型数据库)、rediscouchdb,文件存储数据库Neo4j非关系型图数据库HbaseHadoopDatabase,是一个高可靠性、高性能、面向列(面向列的KV数据库)、可伸缩(动态扩展机器。不需要停服务)、实时读写的分布式数据库利用Hado
- Item-Based Recommendations with Hadoop
liuyuan185442111
OldHadoophadoop大数据分布式
Mahout在MapReduce上实现了Item-BasedCollaborativeFiltering,这里我尝试运行一下。安装Hadoop从下载Mahout并解压准备数据下载1MillionMovieLensDataset,解压得到ratings.dat,用sed‘s/:[0-9]{1,}):[0-9]{1})::[0-9]{1,}$/,\1,\2/’ratings.dat处理成需要的格式。运
- 【大数据毕设】基于Hadoop的音乐推荐系统论文(三)
Maynor996
#课设&毕设大数据课程设计hadoop
博主介绍:✌全网粉丝6W+,csdn特邀作者、博客专家、大数据领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于大数据技术领域和毕业项目实战✌文末获取项目联系摘要本文基于Hadoop技术,设计并实现了一个名为“酷酷音乐网站”的系统,用于音乐资源的存储、管理和推荐。该系统采用Hadoop生态系统中的组件,包括HDFS、MapReduce、HBase和Mahout等,实现
- 如何使用Java进行机器学习?
玥沐春风
java机器学习开发语言
在Java中进行机器学习,可以使用各种开源机器学习库和框架来实现。以下是一些常用的Java机器学习库:Weka:Weka是一个非常流行的机器学习库,提供了大量的算法和工具,以及用于数据预处理、特征选择和可视化的功能。Deeplearning4j:Deeplearning4j是一个用于深度学习的开源库,支持多种神经网络模型和训练算法,可以用于图像分类、文本分析等任务。ApacheMahout:Apa
- 阿里云上部署java8和hadoop3.0、spark、hive及Mahout
karwik
大数据
1.安装JDK1.8到oracle官网:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.htmllinux是64位的,安装jdk-8u131-linux-x64.tar.gz安装及配置参考http://blog.csdn.net/rchm8519/article/details/48721
- 【大数据】图解 Hadoop 生态系统及其组件
G皮T
#Hadoop大数据hadoop分布式hdfsmapreduceyarnhive
图解Hadoop生态系统及其组件1.HDFS2.MapReduce3.YARN4.Hive5.Pig6.Mahout7.HBase8.Zookeeper9.Sqoop10.Flume11.Oozie12.Ambari13.Spark在了解Hadoop生态系统及其组件之前,我们首先了解一下Hadoop的三大组件,即HDFS、MapReduce、YARN,它们共同构成了Hadoop分布式计算框架的核心
- 斯皮尔曼相关性 —— Spearman Correlation
ifnoelse
推荐算法usercacheaction存储
斯皮尔曼相关性可以理解为是排列后(Rank)用户喜好值之间的Pearson相关度。《MahoutinAction》中有这样的解释:假设对于每个用户,我们找到他最不喜欢的物品,重写他的评分值为“1”;然后找到下一个最不喜欢的物品,重写评分值为“2”,以此类推。然后我们对这些转换后的值求Pearson相关系数,这就是Spearman相关系数。斯皮尔曼相关度的计算舍弃了一些重要信息,即真实的评分值。但它
- java+jsp+mysql实现个性化租车推荐系统carcfrs mahout实现基于用户、项目的协同过滤推荐算法 SSH(spring+struts+hibernate)开发框架
74b3a3e489d4
java+jsp+mysql实现个性化租车推荐系统carcfrs一、项目简介只有前台用户,没有管理员,功能是用户登录、注册、评论、评分、收藏、热点推荐、基于用户根据评分进行协同过滤推荐算法,数据爬虫爬取一嗨租车数据。二、项目展示
- Mahout教程_编程入门自学教程_菜鸟教程-免费教程分享
菜鸟一记
笔记
教程简介Mahout是ApacheSoftwareFoundation(ASF)旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。Mahout包含许多实现,包括聚类、分类、推荐过滤、频繁子项挖掘。此外,通过使用ApacheHadoop库,Mahout可以有效地扩展到云中。Mahout教程-使用此入门教程,从简介,机器學習,环境,推荐,聚
- SSH(Spring+Hibernate+Struts)开发框架开发购物商城推荐系统shop mahout实现基于用户、项目的协同过滤推荐算法 个性化购物推荐系统
74b3a3e489d4
SSH(Spring+Hibernate+Struts)开发框架开发购物商城推荐系统shop项目简介1、前台:http://localhost:8080/ComputerRecom/后台:http://localhost:8080/ComputerRecom/admin/login.jsp用户名:admin密码:admin;2、推荐使用mahout接口实现基于用户、项目的协同过滤推荐算法,ssh开
- 大数据学习记录(hadoop hive flume azkaban sqoop)
左上晨
大数据hadoophiveflumeazkaban
大数据学习记录(hadoophiveflumeazkabansqoop)1.hadoop对海量数据进行分布式处理2.核心组件:HDFS(分布式文件系统)、YARN(运算资源调度系统)、MAPREDUCE(分布式运算编程框架)3.HIVE:基于大数据技术(文件系统+运算框架)的SQL数据仓库工具4.HBASE:基于HADOOP的分布式海量数据库5.Mahout:基于mapreduce/spark/f
- 构建智能电商推荐系统:大数据实战中的Kudu、Flink和Mahout应用【上进小菜猪大数据】
上进小菜猪
大数据专栏合集大数据flink人工智能
上进小菜猪,沈工大软件工程专业,爱好敲代码,持续输出干货。本文将介绍如何利用Kudu、Flink和Mahout这三种技术构建一个强大的大数据分析平台。我们将详细讨论这些技术的特点和优势,并提供代码示例,帮助读者了解如何在实际项目中应用它们。通过本文的指导,读者将能够掌握如何使用这些工具来处理大规模数据集,并进行智能分析。在当今的信息时代,大数据分析成为了各行各业中不可或缺的一环。为了有效地处理海量
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo