9. (Hopf) 将 $n$ 阶正矩阵 $A=(a_{ij})$ 的特征值按模从大到小排列为 $$\bex \rho(A)>|\lm_2|\geq \cdot \geq |\lm_n|, \eex$$ 并记 $$\bex \al=\max\sed{a_{ij};1\leq i,j\leq n}, \quad \beta=\min \max\sed{a_{ij};1\leq i,j\leq n}. \eex$$ 则 $$\bex \frac{|\lm_2|}{\rho(A)}\leq \frac{\al-\beta}{\al+\beta}. \eex$$
证明: 参考 [X.Z. Zhan, Matrix theory. Graduate Studies in Mathematics, 147. American Mathematical Society, Providence, RI, 2013] 第 143 页.