- 李宏毅机器学习笔记——反向传播算法
小陈phd
机器学习机器学习算法神经网络
反向传播算法反向传播(Backpropagation)是一种用于训练人工神经网络的算法,它通过计算损失函数相对于网络中每个参数的梯度来更新这些参数,从而最小化损失函数。反向传播是深度学习中最重要的算法之一,通常与梯度下降等优化算法结合使用。反向传播的基本原理反向传播的核心思想是利用链式法则(ChainRule)来高效地计算损失函数相对于每个参数的梯度。以下是反向传播的基本步骤:前向传播(Forwa
- Python机器学习笔记:CART算法实战
战争热诚
完整代码及其数据,请移步小编的GitHub传送门:请点击我如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote前言在python机器学习笔记:深入学习决策树算法原理一文中我们提到了决策树里的ID3算法,C4.5算法,并且大概的了
- 机器学习笔记
rl染离
机器学习笔记人工智能
什么是机器学习:机器学习是一门多学科交叉专业,涵盖概率论知识,统计学知识,近似理论知识和复杂算法知识,使用计算机作为工具并致力于真实实时的模拟人类学习方式,并将现有内容进行知识结构划分来有效提高学习效率。机器学习有下面几种定义:(1)机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。(2)机器学习是对能通过经验自动改进的计算机算法的研究。(3)
- 机器学习笔记(KNN算法)
空木幻城
机器学习python机器学习算法
情景分析现在一个二维平面上有众多点(x1,y1),(x2,y2)...(xn,yn)(x_1,y_1),(x_2,y_2)...(x_n,y_n)(x1,y1),(x2,y2)...(xn,yn),我也知道它们所属哪个类别,现在给出一个点(x,y)(x,y)(x,y),问这个点是属于哪个类的。这是一个典型的分类问题重要概念相邻点的个数K相邻点的个数Kknn中最重要的概念就是这个了,也是唯一需要理解
- 【机器学习笔记】 9 集成学习
RIKI_1
机器学习机器学习笔记集成学习
集成学习方法概述Bagging从训练集中进行子抽样组成每个基模型所需要的子训练集,对所有基模型预测的结果进行综合产生最终的预测结果:假设一个班级每个人的成绩都不太好,每个人单独做的考卷分数都不高,但每个人都把自己会做的部分做了,把所有考卷综合起来得到成绩就会比一个人做的高Boosting训练过程为阶梯状,基模型按次序一一进行训练(实现上可以做到并行),基模型的训练集按照某种策略每次都进行一定的转化
- 吴恩达机器学习全课程笔记第二篇
亿维数组
MachineLearning机器学习笔记人工智能学习
目录前言P31-P33logistics(逻辑)回归决策边界P34-P36逻辑回归的代价函数梯度下降的实现P37-P41过拟合问题正则化代价函数正则化线性回归正则化logistics回归前言这是吴恩达机器学习笔记的第二篇,第一篇笔记请见:吴恩达机器学习全课程笔记第一篇完整的课程链接如下:吴恩达机器学习教程(bilibili)推荐网站:scikit-learn中文社区吴恩达机器学习学习资料(gith
- 【机器学习笔记】7 KNN算法
RIKI_1
机器学习机器学习笔记算法
距离度量欧氏距离(Euclideandistance)欧几里得度量(EuclideanMetric)(也称欧氏距离)是一个通常采用的距离定义,指在维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。曼哈顿距离(Manhattandistance)想象你在城市道路里,要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线
- 【机器学习笔记】14 关联规则
RIKI_1
机器学习机器学习笔记人工智能
关联规则概述关联规则(AssociationRules)反映一个事物与其他事物之间的相互依存性和关联性。如果两个或者多个事物之间存在一定的关联关系,那么,其中一个事物就能够通过其他事物预测到。关联规则可以看作是一种IF-THEN关系。假设商品A被客户购买,那么在相同的交易ID下,商品B也被客户挑选的机会就被发现了。有没有发生过这样的事:你出去买东西,结果却买了比你计划的多得多的东西?这是一种被称为
- 【机器学习笔记】13 降维
RIKI_1
机器学习机器学习笔记人工智能
降维概述维数灾难维数灾难(CurseofDimensionality):通常是指在涉及到向量的计算的问题中,随着维数的增加,计算量呈指数倍增长的一种现象。在很多机器学习问题中,训练集中的每条数据经常伴随着上千、甚至上万个特征。要处理这所有的特征的话,不仅会让训练非常缓慢,还会极大增加搜寻良好解决方案的困难。这个问题就是我们常说的维数灾难。维数灾难涉及数字分析、抽样、组合、机器学习、数据挖掘和数据库
- 【机器学习笔记】8 决策树
RIKI_1
机器学习机器学习笔记决策树
决策树原理决策树是从训练数据中学习得出一个树状结构的模型。决策树属于判别模型。决策树是一种树状结构,通过做出一系列决策(选择)来对数据进行划分,这类似于针对一系列问题进行选择。决策树的决策过程就是从根节点开始,测试待分类项中对应的特征属性,并按照其值选择输出分支,直到叶子节点,将叶子节点的存放的类别作为决策结果。以下小美相亲的例子就是决策树决策树算法是一种归纳分类算法,它通过对训练集的学习,挖掘出
- 【机器学习笔记】 15 机器学习项目流程
RIKI_1
机器学习机器学习笔记人工智能
机器学习的一般步骤数据清洗数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。探索性数据分析(EDA探索性数据分析(EDA)是一个开放式流程,我们制作绘图并计算统计数据,以便探索我们的数据。目的是找到异常,模式,趋势或关系。这些可能是有趣的(例如,找到两个变量之间的相关性),或者它们可用
- 【机器学习笔记】5 机器学习实践
RIKI_1
机器学习机器学习笔记人工智能
数据集划分子集划分训练集(TrainingSet):帮助我们训练模型,简单的说就是通过训练集的数据让我们确定拟合曲线的参数。验证集(ValidationSet):也叫做开发集(DevSet),用来做模型选择(modelselection),即做模型的最终优化及确定的,用来辅助我们的模型的构建,即训练超参数,可选;测试集(TestSet):为了测试已经训练好的模型的精确度。三者划分:训练集、验证集、
- 【机器学习笔记】11 支持向量机
RIKI_1
机器学习机器学习笔记支持向量机
支持向量机(SupportVectorMachine,SVM)支持向量机是一类按监督学习(supervisedlearning)方式对数据进行二元分类的广义线性分类器(generalizedlinearclassifier),其决策边界是对学习样本求解的最大边距超平面(maximum-marginhyperplane)。与逻辑回归和神经网络相比,支持向量机,在学习复杂的非线性方程时提供了一种更为清
- 【机器学习笔记】12 聚类
RIKI_1
机器学习机器学习笔记聚类
无监督学习概述监督学习在一个典型的监督学习中,训练集有标签,我们的目标是找到能够区分正样本和负样本的决策边界,需要据此拟合一个假设函数。无监督学习与此不同的是,在无监督学习中,我们的数据没有附带任何标签,无监督学习主要分为聚类、降维、关联规则、推荐系统等方面。主要的无监督学习方法聚类(Clustering)如何将教室里的学生按爱好、身高划分为5类?降维(DimensionalityReductio
- 【机器学习笔记】4 朴素贝叶斯
RIKI_1
机器学习机器学习笔记人工智能
贝叶斯方法贝叶斯分类贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。朴素贝叶斯分类是这一类算法中最简单的较为常见的算法。先验概率根据以往经验和分析得到的概率。我们用()来代表在没有训练数据前假设拥有的初始概率。后验概率根据已经发生的事件来分析得到的概率。以(|)代表假设成立的情下观察到数据的概率,因为它反映了在看到训练数据后成立的置信度。联合概率是指在多元的概率分
- 【机器学习笔记】 6 机器学习库Scikit-learn
RIKI_1
机器学习机器学习笔记scikit-learn
Scikit-learn概述Scikit-learn是基于NumPy、SciPy和Matplotlib的开源Python机器学习包,它封装了一系列数据预处理、机器学习算法、模型选择等工具,是数据分析师首选的机器学习工具包。自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归,降维和聚类四大机器学习算法。
- 【机器学习笔记】10 人工神经网络
RIKI_1
机器学习机器学习笔记人工智能
人工神经网络发展史1943年,心理学家McCulloch和逻辑学家Pitts建立神经网络的数学模型,MP模型每个神经元都可以抽象为一个圆圈,每个圆圈都附带特定的函数称之为激活函数,每两个神经元之间的连接的大小的加权值即为权重。1960年代,人工网络得到了进一步地发展感知机和自适应线性元件等被提出。M.Minsky仔细分析了以感知机为代表的神经网络的局限性,指出了感知机不能解决非线性问题,这极大影响
- 【机器学习笔记】3 逻辑回归
RIKI_1
机器学习机器学习笔记逻辑回归
分类问题分类问题监督学习最主要的类型,主要特征是标签离散,逻辑回归是解决分类问题的常见算法,输入变量可以是离散的也可以是连续的二分类先从用蓝色圆形数据定义为类型1,其余数据为类型2;只需要分类1次,步骤:①->②多分类问题先定义其中一类为类型1(正类),其余数据为负类(rest);接下来去掉类型1数据,剩余部分再次进行二分类,分成类型2和负类;如果有类,那就需要分类-1次,步骤:①->②->③->
- 【百面机器学习笔记】模型评估
葡萄肉多
模型评估指标准确率(Accuracy)准确率是指分类正确的样本占总样本个数的比例。Accuracy=n(correct)/n(total)当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率。所以,当不同类别的样本比例非常不均衡时,占比大的类别往往成为影响准确率的最主要因素。精确率(Precision)&召回率(Recall)精确率是指分类正确的正样本个数占分类器判定为正样本
- 李宏毅机器学习笔记 2.回归
Simone Zeng
机器学习机器学习
最近在跟着Datawhale组队学习打卡,学习李宏毅的机器学习/深度学习的课程。课程视频:https://www.bilibili.com/video/BV1Ht411g7Ef开源内容:https://github.com/datawhalechina/leeml-notes本篇文章对应视频中的P3。另外,最近我也在学习邱锡鹏教授的《神经网络与深度学习》,会补充书上的一点内容。通过上一次课1.机器
- 【机器学习笔记】基于实例的学习
住在天上的云
机器学习机器学习笔记学习KNN实例学习
基于实例的学习文章目录基于实例的学习1基本概念与最近邻方法2K-近邻(KNN)3距离加权KNN4基于实例/记忆的学习器5局部加权回归5多种回归方式对比6懒惰学习与贪婪学习动机:人们通过记忆和行动来推理学习。1基本概念与最近邻方法名词概念参数化设定一个特定的函数形式优点:简单,容易估计和解释可能存在很大的偏置:实际的数据分布可能不遵循假设的分布非参数化:分布或密度的估计是数据驱动的(data-dri
- fast.ai 机器学习笔记(一)
绝不原创的飞龙
人工智能人工智能python
机器学习1:第1课原文:medium.com/@hiromi_suenaga/machine-learning-1-lesson-1-84a1dc2b5236译者:飞龙协议:CCBY-NC-SA4.0来自机器学习课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。简要课程大纲根据时间和班级兴趣,我们将涵盖类似以下内容
- fast.ai 机器学习笔记(四)
绝不原创的飞龙
人工智能人工智能python
机器学习1:第11课原文:medium.com/@hiromi_suenaga/machine-learning-1-lesson-11-7564c3c18bbb译者:飞龙协议:CCBY-NC-SA4.0来自机器学习课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。使用SGD优化多层函数的回顾[0:00]这个想法是
- 机器学习笔记(3):误差、复杂度曲线、学习曲线等
链原力
本文来自之前在Udacity上自学机器学习的系列笔记。这是第3篇,介绍了模型的误差类型、误差的由来、找到模型适合的参数、以及避免欠拟合和过拟合的方法。1.诊断误差1.1.误差类型我们的预测或者分类的结果与实际结果相比较,会存在一定的误差,误差越小,表示结果越好。一般有两种误差来源,欠拟合和过拟合。将问题看得过于简单导致了欠拟合(Underfitting),将问题看得过于复杂导致了过拟合(Overf
- fast.ai 机器学习笔记(三)
绝不原创的飞龙
人工智能人工智能python
机器学习1:第8课原文:medium.com/@hiromi_suenaga/machine-learning-1-lesson-8-fa1a87064a53译者:飞龙协议:CCBY-NC-SA4.0来自机器学习课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。广义定义的神经网络视频/笔记本正如我们在上一课结束时讨
- fast.ai 机器学习笔记(二)
绝不原创的飞龙
人工智能人工智能python
机器学习1:第5课原文:medium.com/@hiromi_suenaga/machine-learning-1-lesson-5-df45f0c99618译者:飞龙协议:CCBY-NC-SA4.0来自机器学习课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。视频复习测试集,训练集,验证集和OOB我们有一个数据集
- 政安晨:示例演绎机器学习中(深度学习)神经网络的数学基础——快速理解核心概念(一){两篇文章讲清楚}
政安晨
政安晨的机器学习笔记神经网络人工智能深度学习Python数学基础机器学习Conda
进入人工智能领域免不了与算法打交道,算法依托数学基础,很多小伙伴可能新生畏惧,不用怕,算法没那么难,也没那么玄乎,未来人工智能时代说不得人人都要了解算法、应用算法。本文试图以一篇文章,用程序演绎的方式给大家把这里面的数学基础先讲清楚,以便于咱们未来深入,呵呵。第一次接触机器学习的小伙伴,环境搭建参考我的这篇文章(只参考这个里面关于环境搭建的部分就可以):政安晨的机器学习笔记——跟着演练快速理解Te
- 【机器学习笔记】贝叶斯学习
住在天上的云
机器学习机器学习笔记学习贝叶斯学习人工智能
贝叶斯学习文章目录贝叶斯学习1贝叶斯学习背景2贝叶斯定理3最大后验假设MAP(MaxAPosterior)4极大似然假设ML(MaximumLikelihood)5朴素贝叶斯NB6最小描述长度MDL1贝叶斯学习背景试图发现两件事情的关系(因果关系,先决条件&结论)。执果索因:肺炎→肺癌?不好确定,换成确诊肺癌得肺炎的概率2贝叶斯定理贝叶斯定理是一种用先验慨率来推断后验慨率的公式,它可以表示为:P(
- 【机器学习笔记】决策树
住在天上的云
机器学习机器学习笔记决策树
决策树文章目录决策树1决策树学习基础2经典决策树算法3过拟合问题1决策树学习基础适用决策树学习的经典目标问题带有非数值特征的分类问题离散特征没有相似度概念特征无序例子:SkyTempHumidWindWaterForecastEnjoySunnyWarmNormalStrongWarmSameYesSunnyWarmHighStrongWarmSameYesRainyColdHighStrongW
- 【机器学习笔记】回归算法
住在天上的云
机器学习笔记回归线性回归人工智能
回归算法文章目录回归算法1线性回归2损失函数3多元线性回归4线性回归的相关系数1线性回归回归分析(Regression)回归分析是描述变量间关系的一种统计分析方法例:在线教育场景因变量Y:在线学习课程满意度自变量X:平台交互性、教学资源、课程设计预测性的建模技术,通常用于预测分析,预测的结果多为连续值(也可为离散值,二值)线性回归(Linearregression)因变量和自变量之间是线性关系,就
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc