编程之美2.16求数组中最长递增子序列Java版

解法三还没写

/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package Test;

import static jdk.nashorn.internal.objects.NativeMath.min;

/**
 *
 * 2.16 求数组中最长递增子序列
 */
public class SearchMaxAsc {

    public static void main(String[] args) {
        int[] arry = new int[]{1, -1, 2, -3, 4, -5, 6, -7};
        //解法一  这个方法只能返回子序列的长度,不能返回子序列
        int num1 = search_max_asc1(arry);
        System.out.println("最大长度 =" + num1);
        //解法一.一  可以返回子序列
        String str = search_max_asc1_1(arry);
        System.out.println("最长子序列 =" + str);
        //解法二
        int num2 = search_max_asc2(arry);
        System.out.println("最大长度 =" + num2);
    }

    private static int search_max_asc1(int[] arry) {
        int[] lis = new int[arry.length];
        for (int i = 0; i < arry.length; i++) {
            lis[i] = 1;
            for (int j = 0; j < i; j++) {
                if (arry[i] > arry[j] && lis[j] + 1 > lis[i]) {
                    lis[i] = lis[j] + 1;
                }
            }
        }
        return max(lis);
    }

    private static String search_max_asc1_1(int[] arry) {
        int[] lis = new int[arry.length];
        String[] str = new String[arry.length];
        for (int i = 0; i < arry.length; i++) {
            str[i] = arry[i] + "";
            lis[i] = 1;
            for (int j = 0; j < i; j++) {
                if (arry[i] > arry[j] && lis[j] + 1 > lis[i]) {
                    lis[i] = lis[j] + 1;
                    str[i] = str[j];
                    str[i] += "," + arry[i];
                }
            }
        }
        int n = max_num(lis);
        return str[n];
    }

    private static int search_max_asc2(int[] arry) {
        //记录数组中的递增序列信息
        int[] MaxV = new int[arry.length];

        MaxV[1] = arry[0];                //数组中的第一值,边界值
        MaxV[0] = min(arry) - 1;            //数组中最小值,边界值
        int[] LIs = new int[arry.length];

        //初始化最长递增序列的信息
        for (int i : LIs) {
            i = 1;
        }

        int nMaxLIs = 1;              //数组最长递增子序列的长度

        for (int i = 1; i < arry.length; i++) {
            //遍历历史最长递增序列信息
            int j;
            for (j = nMaxLIs; j >= 0; j--) {
                if (arry[i] > MaxV[j]) {
                    LIs[i] = j + 1;
                    break;
                }
            }

            //如果当前最长序列大于最长递增序列长度,更新最长信息
            if (LIs[i] > nMaxLIs) {
                nMaxLIs = LIs[i];
                MaxV[LIs[i]] = arry[i];
            }else if(MaxV[j]  max) {
                max = lis[i];
            }
        }
        return max;
    }

    private static int max_num(int[] lis) {
        int max = lis[0];
        int num = 0;
        for (int i = 1; i < lis.length; i++) {
            if (lis[i] > max) {
                max = lis[i];
                num = i;
            }
        }
        return num;
    }

    private static int min(int[] lis) {
        int min = lis[0];
        for (int i = 1; i < lis.length; i++) {
            if (lis[i] < min) {
                min = lis[i];
            }
        }
        return min;
    }

}


你可能感兴趣的:(编程之美笔记)