图1 不同中心震荡频率下在Gabor函数
代码:根据http://blog.csdn.net/watkinsong/article/details/7876361实现
#include
#include
#include
#include
#include
using namespace cv;
using namespace std;
const double PI = 3.14159265;
// ref: http://blog.csdn.net/watkinsong/article/details/7876361
Mat getMyGabor(int width, int height, int U, int V, double Kmax, double f,
double sigma, int ktype, const string& kernel_name)
{
//CV_ASSERT(width % 2 == 0 && height % 2 == 0);
//CV_ASSERT(ktype == CV_32F || ktype == CV_64F);
int half_width = width / 2;
int half_height = height / 2;
double Qu = PI*U/8;
double sqsigma = sigma*sigma;
double Kv = Kmax/pow(f,V);
double postmean = exp(-sqsigma/2);
Mat kernel_re(width, height, ktype);
Mat kernel_im(width, height, ktype);
Mat kernel_mag(width, height, ktype);
double tmp1, tmp2, tmp3;
for(int j = -half_height; j <= half_height; j++){
for(int i = -half_width; i <= half_width; i++){
tmp1 = exp(-(Kv*Kv*(j*j+i*i))/(2*sqsigma));
tmp2 = cos(Kv*cos(Qu)*i + Kv*sin(Qu)*j) - postmean;
tmp3 = sin(Kv*cos(Qu)*i + Kv*sin(Qu)*j);
if(ktype == CV_32F)
kernel_re.at(j+half_height, i+half_width) =
(float)(Kv*Kv*tmp1*tmp2/sqsigma);
else
kernel_re.at(j+half_height, i+half_width) =
(double)(Kv*Kv*tmp1*tmp2/sqsigma);
if(ktype == CV_32F)
kernel_im.at(j+half_height, i+half_width) =
(float)(Kv*Kv*tmp1*tmp3/sqsigma);
else
kernel_im.at(j+half_height, i+half_width) =
(double)(Kv*Kv*tmp1*tmp3/sqsigma);
}
}
magnitude(kernel_re, kernel_im, kernel_mag);
if(kernel_name.compare("real") == 0)
return kernel_re;
else if(kernel_name.compare("imag") == 0)
return kernel_im;
else if(kernel_name.compare("mag") == 0)
return kernel_mag;
else
printf("Invalid kernel name!\n");
}
void construct_gabor_bank()
{
double Kmax = PI/2;
double f = sqrt(2.0);
double sigma = 2*PI;
int U = 7;
int V = 4;
int GaborH = 129;
int GaborW = 129;
Mat kernel;
Mat totalMat;
for(U = 0; U < 8; U++){
Mat colMat;
for(V = 0; V < 5; V++){
kernel = getMyGabor(GaborW, GaborH, U, V,
Kmax, f, sigma, CV_64F, "real");
//show gabor kernel
normalize(kernel, kernel, 0, 1, CV_MINMAX);
printf("U%dV%d\n", U, V);
//imshow("gabor", kernel);
//waitKey(0);
if(V == 0)
colMat = kernel;
else
vconcat(colMat, kernel, colMat);
}
if(U == 0)
totalMat = colMat;
else
hconcat(totalMat, colMat, totalMat);
}
imshow("gabor bank", totalMat);
//imwrite("gabor_bank.jpg",totalMat);
waitKey(0);
}
Mat gabor_filter(Mat& img)
{
// variables for gabor filter
double Kmax = PI/2;
double f = sqrt(2.0);
double sigma = 2*PI;
int U = 7;
int V = 4;
int GaborH = 129;
int GaborW = 129;
//
Mat kernel_re, kernel_im;
Mat dst_re, dst_im, dst_mag;
// variables for filter2D
Point archor(-1,-1);
int ddepth = -1;
double delta = 0;
// filter image with gabor bank
Mat totalMat;
for(U = 0; U < 8; U++){
Mat colMat;
for(V = 0; V < 5; V++){
kernel_re = getMyGabor(GaborW, GaborH, U, V,
Kmax, f, sigma, CV_64F, "real");
kernel_im = getMyGabor(GaborW, GaborH, U, V,
Kmax, f, sigma, CV_64F, "imag");
filter2D(img, dst_re, ddepth, kernel_re);
filter2D(img, dst_im, ddepth, kernel_im);
dst_mag.create(img.rows, img.cols, CV_32FC1);
magnitude(Mat_(dst_re),Mat_(dst_im),
dst_mag);
//show gabor kernel
normalize(dst_mag, dst_mag, 0, 1, CV_MINMAX);
printf("U%dV%d\n", U, V);
//imshow("dst_mag", dst_mag);
//waitKey(0);
if(V == 0)
colMat = dst_mag;
else
vconcat(colMat, dst_mag, colMat);
}
if(U == 0)
totalMat = colMat;
else
hconcat(totalMat, colMat, totalMat);
}
return totalMat;
}
int main( int argc, char** argv )
{
//construct_gabor_bank();
Mat image;
image = imread(argv[1], 0); // Read the file
if(! image.data ) // Check for invalid input
{
cout << "Could not open or find the image" << std::endl ;
return -1;
}
Mat filterd_image = gabor_filter(image);
imshow("filtered image", filterd_image);
//imwrite("filterd_image.jpg",filterd_image);
waitKey(0);
return 0;
}
其中,construct_gabor_bank函数构建了5个尺度8个方向上的Gabor小波,如下图所示:
gabor_filter函数利用构建好的Gabor小波对图像进行滤波,原图和滤波后在图像如下图所示:
文档及代码地址:http://download.csdn.net/detail/lichengyu/7008011
注:这一版本的代码有问题,filter2D函数的ddepth参数值应改为CV_64而非采用默认值,见fOpenCV实现Gabor滤波(2)