【系列论文研读】Self-supervised learning

Self-supervised Spatiotemporal Feature Learning by Video Geometric Transformations

  • 处理数据:video
  • 方法:
    • a set of pre-designed geometric transformations (e.g. rotating 0°, 90°, 180°, and 270°) are applied to each video
    • 预测 transformations (e.g. rotations)

 

Mix-and-Match Tuning for Self-Supervised Semantic Segmentation

  • 自监督模块=打乱(mix)+重组(match)
  • mix:稀疏的对目标集中的patch采样、组合
  • MM的目的:让同类别的更近,不同类别的更远
  • 先用self-supervised proxy task初始化,再使用MM tuning

 

Boosting Self-Supervised Learning via Knowledge Transfer

  • 整体框架图
    • 【系列论文研读】Self-supervised learning_第1张图片
  • (a)中的pretext task是Jigsaw++ task
    • 【系列论文研读】Self-supervised learning_第2张图片
    • In Jigsaw++, we replace a random number of tiles in the grid (up to 2) with (occluding) tiles from another random image

你可能感兴趣的:(论文研读)