OneClassSVM是一种单分类算法,也常用来做异常检测(不符合常规模式的即为异常)。
比方说,我们要判断一张照片里的人脸,是男性还是女性,这是个二分类问题。对于一张未知性别的人脸,经过svm分类器分类(经典的二分类svm),我们会给出他\她是男性or不是男性的结果。那么经典svm训练的方式呢,就是将一堆已标注了男女性别的人脸照片(假设男性是正样本,女性是负样本),提取出有区分性别的特征(假设这种能区分男女性别的特征已构建好)后,通过svm中的支持向量,找到这男女两类性别特征点的最大间隔。进而在输入一张未知性别的照片后,经过特征提取步骤,就可以通过这个训练好的svm很快得出照片内人物的性别,此时我们得出的结论,我们知道要么是男性,不是男性的话,那一定是女性。以上情况是假设,我们用于训练的样本,包括了男女两类的图片,并且两类图片的数目较为均衡。现实生活中的我们也是这样,我们只有在接触了足够多的男生女生,知道了男生女生的性别特征差异后(比方说女性一般有长头发,男性一般有胡子等等),才能准确判断出这个人到底是男是女。
那么单分类呢,出现在需要对训练样本进行一定比例的筛选,或者已知的训练样本都是正样本,而负样本却很少的情况。 这种情况下,往往需要训练一个对于训练样本紧凑的分类边界,就可以通过负样本实验。一个简单的实际例子是:一个工厂对于产品的合格性进行检查时,往往所知道是合格产品的参数,而不合格的产品的参数要么空间比较大,要么知道的很少。这种情况下就可以通过已知的合格产品参数来训练一个一类分类器,得到一个紧凑的分类边界,超出这个边界就认为是不合格产品。
细节请参考大牛Bernhard Scholkopf的文章参考文献3:Support Vector Method for Novelty Detection http://papers.nips.cc/paper/1723-support-vector-method-for-novelty-detection.pdf
one class classification这如何实现呢?多类classification我们都很熟悉了,方法也很多,比如像SVM去寻找一个最优超平面把正负样本分开,总之都涉及到不止一个类的样本,相当于告诉算法这种东西长什么样(这里的长什么样指的是特征提取方法所提取到的提取),那种东西长什么样,于是训练出一个模型能够区分这些东西。
问题是在one class classification只有一个类,这该怎么办呢?给大家介绍一个方法:SVDD(support vector domain description),它的基本思想是,既然只有一个class,那么我就训练出一个最小的超球面(超球面是指3维以上的空间中的球面,对应的2维空间中就是曲线,3维空间中就是球面,3维以上的称为超球面),把这堆数据全都包起来,识别一个新的数据点时,如果这个数据点落在超球面内,就是这个类,否则不是。
sklearn库中已经有了相关的API,可以直接调用。OneClassSVM主要参数和方法:
class sklearn.svm.OneClassSVM(kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, tol=0.001, nu=0.5, shrinking=True, cache_size=200, verbose=False, max_iter=-1, random_state=None)
官方例子:
#!/usr/bin/python
# -*- coding:utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.font_manager
from sklearn import svm
xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500))
# Generate train data
X = 0.3 * np.random.randn(100, 2)
X_train = np.r_[X + 2, X - 2]
# Generate some regular novel observations
X = 0.3 * np.random.randn(20, 2)
X_test = np.r_[X + 2, X - 2]
# Generate some abnormal novel observations
X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))
# fit the model
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)
n_error_train = y_pred_train[y_pred_train == -1].size
n_error_test = y_pred_test[y_pred_test == -1].size
n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size
# plot the line, the points, and the nearest vectors to the plane
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.title("Novelty Detection")
plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.PuBu) #绘制异常样本的区域
a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='darkred') #绘制正常样本和异常样本的边界
plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='palevioletred') #绘制正常样本的区域
s = 40
b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white', s=s, edgecolors='k')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='blueviolet', s=s,
edgecolors='k')
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='gold', s=s,
edgecolors='k')
plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
plt.legend([a.collections[0], b1, b2, c],
["learned frontier", "training observations",
"new regular observations", "new abnormal observations"],
loc="upper left",
prop=matplotlib.font_manager.FontProperties(size=11))
plt.xlabel(
"error train: %d/200 ; errors novel regular: %d/40 ; "
"errors novel abnormal: %d/40"
% (n_error_train, n_error_test, n_error_outliers))
plt.show()
参考文章:
1,https://blog.csdn.net/u012646786/article/details/78599373
2,http://www.zhihu.com/question/22365729
3,http://papers.nips.cc/paper/1723-support-vector-method-for-novelty-detection.pdf
4,https://blog.csdn.net/YE1215172385/article/details/79750703