Handler、Looper、Message是Android线程间通信的重要概念,我们在项目中会经常用到,最常用的写法,创建一个Handler对象,在线程中通过Handler发送消息来更新UI,这是很常用的写法,那么有时候我们把Handler的创建写在线程里面,运行就会报错,错误信息大都是“Can't create handler inside thread that has notcalled ,Looper.prepare().”,意思是说我们没有调用Loope.prepare方法,那么Looper的prepare方法到底都干了什么,它和Handler又有什么关系呢,它们的实现原理又是怎样的呢,下面我们详细分析一下。
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
ThreadLocal,用来存储以当前线程为键的一对键值对(可以理解为HashMap),它的键默认是当前的线程对象,通过set()方法设置对应的值,可以是任意对象,在这里是指一个Looper对象。get方法就是获取以当前线程为键对应的值,这里也是指一个Looper对象。
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
Looper的构造方法,创建了一个MessageQueue对象赋给了Looper的MessageQueue成员变量mQueue,把当前线程赋给了Looper的Thread成员变量mThread。
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
msg.target.dispatchMessage(msg);
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
然后从
Looper中拿到初始化
Looper时创建的
MessageQueue对象赋给
queue,MessageQueue消息队列的内部实现其实是基于单链表的数据结构,虽然它叫消息队列,其中主要有两个方法
next和enqueueMessage(Message msg, long when),分别是从消息队列中取出消息和将消息添加到消息队列中。
Message msg = queue.next(); // might block
通过queue的next方法从消息队列中取出消息,queue.next()这个方法是阻塞式的,如果消息队列中没有消息对象就一直等待,直到有消息为止,类似于Java Socket编程中ServerSocket.accept()方法,也是一直等待Socket去连接,如果没有连接就一直等待。如果取到的消息为空就直接return。我们看一下next()方法
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
这段代码有点长,不过我们主要看下消息是怎么从消息队列中取出来的。
继续到msg.target.dispatchMessage(msg);
通过查看Message源码我们发现Message的target属性是一个Handler对象,为了了解清楚这个target是怎么被初始化的,我们从获取Message对象开始分析。handler.obtainMessage();
public final Message obtainMessage(){
return Message.obtain(this);
}
走到Message.obtain(this);
public static Message obtain(Handler h) {
Message m = obtain();
m.target = h;
return m;
}
这里传入了一个this对象,也就是handler,这个handler就是我们在代码中实例化的handler,接着又调用obtain()方法获取到Message对象m,把handler赋给m的target属性。我们再看一下Message的obtain()方法。
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}
这块主要就是从消息池中取出消息,如果没有的话就直接new一个Message对象,所以我们在写项目创建Message对象的时候尽量用
handle.obtainMessage(),不要直接
new Message(),因为obtainMessage方法最后如果没有获取到Message对象时才会new出一个,这样处理会比较合适。
回到上面msg.target.dispatchMessage();
msg.target其实就是初始化的handler,然后调用Handler的dispatchMessage();
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
首先判断msg.的callback是否为空,接着再判断handler的mCallBack是否为空,这些在对象初始化的时候都为空,所以执行handleMessage(),这就到了我们重写的方法了。
说了这么多,可能大家不太明白,我们在代码中没有调用过Looper.prepare()和Looper.loop(),那这些代码是在什么时候调用的呢,其实在Activity启动的时候,系统就已经在主线程中调用Looper.prepare()和Looper.loop()了,不过在进入到消息循环后,没有Message对象,所以处于阻塞状态,直到Handler发送消息到MessageQueue,这时才开始处理消息。下面我们分析一下Handler的初始化以及发送消息的具体过程。
首先看下初始化过程
public Handler() {
this(null, false);
}
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&`11
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
Looper的myLooper方法发返回sThreadLocal中以当前线程为键的Looper对象,接着把这个looper对象赋给Handler的Looper成员变量mLooper
接着把looper对象的消息队列赋给Handler的MessageQueue成员变量mQueue。
callback和async默认分别是null和false。到这Handler的初始化就结束了。
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
如果消息队列为空就会报错,不为空就到
enqueueMessage(queue, msg, uptimeMillis);
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
这个方法就是将消息加到消息队列中,分析插入的过程,消息是以头插的方式加入消息队列的,而且MessageQueue的成员变量mMessage一直指向第一个消息,也就是最新加入的消息,插入的过程如下图所示
class TestThread extends Thread{
@Override
public void run(){
Runnable r = new Runnable(){
@Override
public void run() {
String currentThreadName = Thread.currentThread().getName();
System.out.println("currentThreadName:" + currentThreadName);
}
};
handler.post(r);
}
}
public final boolean post(Runnable r){
return sendMessageDelayed(getPostMessage(r), 0);
}
继续看下
getPostMessage
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r;
return m;
}
这里会得到一个Message对象m,然后把Runnable对象赋给m的callback属性,接着返回m,之后发送消息,同时添加到消息队列中,然后就又到了这段代码
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
现在msg的callback属性就不为空了,刚把一个Runnable对象赋给了它,所以现在就要执行handleCallback()了
private static void handleCallback(Message message) {
message.callback.run();
}
看到这大家应该都明白了吧,在handleCallback中直接调用了msg.callback的run方法,所以这个Runnable线程体并没有开启,这也就解释了为什么开始那段程序的输出是main,那么这种代码设计又有什么意义呢,其实这样可以把一段代码块当成一个对象进行传递,使代码更加灵活。有点像iOS中的Block,(悄悄的装一下逼)我们在平时写代码时也应该多借鉴这种写法,这样写出来的代码才更加优雅~~~
追求优雅的代码
---End---