OTB Results

https://github.com/foolwood/benchmark_results

Share results for more recent trackers.

 All results in [Baidu Yun] 

Benchmark Results

The trackers are ordered by the average overlap scores.

  • AUC and Precision are the standard metrics.
Tracker AUC-CVPR2013 Precision-CVPR2013 AUC-OTB100 Precision-OTB100 AUC-OTB50 Precision-OTB50 Deep Learning
ECO - - 0.694 - - - Y
SANet - - 0.692 0.928 - - Y
MDNet 0.708 0.948 0.678 0.909 0.645 0.890 Y
TCNN 0.682 0.937 0.654 0.884 - - Y
C-COT 0.673 0.899 0.671 0.898 0.614 0.843 N
CRT - - 0.644 0.875 0.594 0.835 N
DNT 0.664 0.907 0.627 0.851 - - Y
SINT+ 0.655 0.882 - - - - Y
DRT 0.655 0.892 - - - - Y
RDT 0.654 - 0.603 - - - Y
SRDCFdecon 0.653 0.870 0.627 0.825 0.560 0.764 N
DeepLMCF 0.643 0.892 - - - - Y
MUSTer 0.641 0.865 0.575 0.774 - - N
DeepSRDCF 0.641 0.849 0.635 0.851 0.560 0.772 Y
SINT 0.635 0.851 - - - - Y
LCT 0.628 0.848 0.562 0.762 0.492 0.691 N
SRDCF 0.626 0.838 0.598 0.789 0.539 0.732 N
LMCF 0.624 0.839 - - - - N
SCF 0.623 0.874 - - - - N
SiamFC 0.612 0.815 - - - - Y
SiamFC_{3s} 0.608 0.809 0.582 0.773 - - Y
CF2 0.605 0.891 0.562 0.837 0.513 0.803 Y
HDT 0.603 0.889 0.654 0.848 0.515 0.804 Y
Staple 0.600 0.793 0.578 0.784 - - N
FCNT 0.599 0.856 - - - - Y
CNN-SVM 0.597 0.852 0.554 0.814 0.512 0.769 Y
SCT 0.595 0.845 - - - - Y
SO-DLT 0.595 0.810 - - - - Y
BIT 0.593 0.817 - - - - N
DLSSVM 0.589 0.829 0.541 0.767 - - Y
SAMF 0.579 0.785 0.535 0.743 - - N
RPT 0.577 0.805 - - - - N
MEEM 0.566 0.830 0.530 0.781 0.473 0.712 N
DSST 0.554 0.737 0.520 0.693 0.463 0.625 N
CNT 0.545 0.723 - - - - Y
TGPR 0.529 0.766 0.458 0.643 - - N
KCF 0.514 0.740 0.477 0.693 0.403 0.611 N
GOTURN 0.444 0.620 0.427 0.572 - - Y

Visual Trackers

  • DNT: Zhizhen Chi, Hongyang Li, Huchuan Lu, Ming-Hsuan Yang. "Dual Deep Network for Visual Tracking." TIP (2017). [paper]

  • DRT: Junyu Gao, Tianzhu Zhang, Xiaoshan Yang, Changsheng Xu. "Deep Relative Tracking." TIP (2017). [paper]

  • ECO: Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, Michael Felsberg. "ECO: Efficient Convolution Operators for Tracking." CVPR (2017). [paper]

  • LMCF: Mengmeng Wang, Yong Liu, Zeyi Huang. "Large Margin Object Tracking with Circulant Feature Maps." CVPR (2017). [paper] [zhihu]

  • BIT: Bolun Cai, Xiangmin Xu, Xiaofen Xing, Kui Jia, Jie Miao, Dacheng Tao. "BIT: Biologically Inspired Tracker." TIP (2016). [paper] [project] [github]

  • SiameseFC: Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, Philip H.S. Torr. "Fully-Convolutional Siamese Networks for Object Tracking." ECCV workshop (2016). [paper] [project] [github]

  • GOTURN: David Held, Sebastian Thrun, Silvio Savarese. "Learning to Track at 100 FPS with Deep Regression Networks." ECCV (2016). [paper] [project] [github]

  • C-COT: Martin Danelljan, Andreas Robinson, Fahad Khan, Michael Felsberg. "Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking." ECCV (2016). [paper] [project] [github]

  • CF+AT: Adel Bibi, Matthias Mueller, and Bernard Ghanem. "Target Response Adaptation for Correlation Filter Tracking." ECCV (2016). [paper] [project]

  • MDNet: Nam, Hyeonseob, and Bohyung Han. "Learning Multi-Domain Convolutional Neural Networks for Visual Tracking." CVPR (2016). [paper] [VOT_presentation] [project] [github]

  • SINT: Ran Tao, Efstratios Gavves, Arnold W.M. Smeulders. "Siamese Instance Search for Tracking." CVPR (2016). [paper] [project]

  • SCT: Jongwon Choi, Hyung Jin Chang, Jiyeoup Jeong, Yiannis Demiris, and Jin Young Choi. "Visual Tracking Using Attention-Modulated Disintegration and Integration." CVPR (2016). [paper] [project]

  • STCT: Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. "STCT: Sequentially Training Convolutional Networks for Visual Tracking." CVPR (2016). [paper] [github]

  • SRDCFdecon: Martin Danelljan, Gustav Häger, Fahad Khan, Michael Felsberg. "Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking." CVPR (2016). [paper] [project]

  • HDT: Yuankai Qi, Shengping Zhang, Lei Qin, Hongxun Yao, Qingming Huang, Jongwoo Lim, Ming-Hsuan Yang. "Hedged Deep Tracking." CVPR (2016). [paper] [project]

  • Staple: Luca Bertinetto, Jack Valmadre, Stuart Golodetz, Ondrej Miksik, Philip H.S. Torr. "Staple: Complementary Learners for Real-Time Tracking." CVPR (2016). [paper] [project] [github]

  • DLSSVM: Jifeng Ning, Jimei Yang, Shaojie Jiang, Lei Zhang and Ming-Hsuan Yang. "Object Tracking via Dual Linear Structured SVM and Explicit Feature Map." CVPR (2016). [paper] [code] [project]

  • CNT: Kaihua Zhang, Qingshan Liu, Yi Wu, Minghsuan Yang. "Robust Visual Tracking via Convolutional Networks Without Training." TIP (2016). [paper] [code]

  • DeepSRDCF: Martin Danelljan, Gustav Häger, Fahad Khan, Michael Felsberg. "Convolutional Features for Correlation Filter Based Visual Tracking." ICCV workshop (2015). [paper] [project]

  • SRDCF: Martin Danelljan, Gustav Häger, Fahad Khan, Michael Felsberg. "Learning Spatially Regularized Correlation Filters for Visual Tracking." ICCV (2015). [paper] [project]

  • CNN-SVM: Seunghoon Hong, Tackgeun You, Suha Kwak and Bohyung Han. "Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network ." ICML (2015) [paper] [project]

  • CF2: Chao Ma, Jia-Bin Huang, Xiaokang Yang and Ming-Hsuan Yang. "Hierarchical Convolutional Features for Visual Tracking." ICCV (2015) [paper] [project] [github]

  • FCNT: Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. "Visual Tracking with Fully Convolutional Networks." ICCV (2015). [paper] [project] [github]

  • LCT: Chao Ma, Xiaokang Yang, Chongyang Zhang, Ming-Hsuan Yang. "Long-term Correlation Tracking." CVPR (2015). [paper] [project] [github]

  • RPT: Yang Li, Jianke Zhu and Steven C.H. Hoi. "Reliable Patch Trackers: Robust Visual Tracking by Exploiting Reliable Patches." CVPR (2015). [paper] [github]

  • CLRST: Tianzhu Zhang, Si Liu, Narendra Ahuja, Ming-Hsuan Yang, Bernard Ghanem.
    "Robust Visual Tracking Via Consistent Low-Rank Sparse Learning." IJCV (2015). [paper] [project] [code]

  • DSST: Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan and Michael Felsberg. "Accurate Scale Estimation for Robust Visual Tracking." BMVC (2014). [paper] [PAMI] [project]

  • MEEM: Jianming Zhang, Shugao Ma, and Stan Sclaroff. "MEEM: Robust Tracking via Multiple Experts using Entropy Minimization." ECCV (2014). [paper] [project]

  • TGPR: Jin Gao, Haibin Ling, Weiming Hu, Junliang Xing. "Transfer Learning Based Visual Tracking with Gaussian Process Regression." ECCV (2014). [paper] [project]

  • STC: Kaihua Zhang, Lei Zhang, Ming-Hsuan Yang, David Zhang. "Fast Tracking via Spatio-Temporal Context Learning." ECCV (2014). [paper] [project]

  • SAMF: Yang Li, Jianke Zhu. "A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration." ECCV workshop (2014). [paper] [github]

  • KCF: João F. Henriques, Rui Caseiro, Pedro Martins, Jorge Batista. "High-Speed Tracking with Kernelized Correlation Filters." TPAMI (2015). [paper] [project]

Others

  • RDT: Janghoon Choi, Junseok Kwon, Kyoung Mu Lee. "Visual Tracking by Reinforced Decision Making." arXiv (2017). [paper]

  • MSDAT: Xinyu Wang, Hanxi Li, Yi Li, Fumin Shen, Fatih Porikli . "Robust and Real-time Deep Tracking Via Multi-Scale Domain Adaptation." arXiv (2017). [paper]

  • RLT: Da Zhang, Hamid Maei, Xin Wang, Yuan-Fang Wang. "Deep Reinforcement Learning for Visual Object Tracking in Videos." arXiv (2017). [paper]

  • TCNN: Hyeonseob Nam, Mooyeol Baek, Bohyung Han. "Modeling and Propagating CNNs in a Tree Structure for Visual Tracking." arXiv (2016). [paper] [code]

  • SCF: Wangmeng Zuo, Xiaohe Wu, Liang Lin, Lei Zhang, Ming-Hsuan Yang. "Learning Support Correlation Filters for Visual Tracking." arXiv (2016). [paper] [project]

  • Susanna Gladh, Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg. "Deep Motion Features for Visual Tracking." ICPR Best Paper (2016). [paper]

  • SANet: Heng Fan, Haibin Ling. "SANet: Structure-Aware Network for Visual Tracking." arXiv (2016). [paper]

  • CRT: Kai Chen, Wenbing Tao. "Convolutional Regression for Visual Tracking." arXiv (2016). [paper]

  • BMR: Kaihua Zhang, Qingshan Liu, and Ming-Hsuan Yang. "Visual Tracking via Boolean Map Representations." arXiv (2016). [paper]

  • CSR-DCF: Alan Lukežič, Tomáš Vojíř, Luka Čehovin, Jiří Matas, Matej Kristan. "Discriminative Correlation Filter with Channel and Spatial Reliability." arXiv (2016). [paper]

  • YCNN: Kai Chen, Wenbing Tao. "Once for All: a Two-flow Convolutional Neural Network for Visual Tracking." arXiv (2016). [paper]

  • Learnet: Luca Bertinetto, João F. Henriques, Jack Valmadre, Philip H. S. Torr, Andrea Vedaldi. "Learning feed-forward one-shot learners." NIPS (2016). [paper]

  • ROLO: Guanghan Ning, Zhi Zhang, Chen Huang, Zhihai He, Xiaobo Ren, Haohong Wang. "Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking." arXiv (2016). [paper] [project] [github]

  • Yao Sui, Ziming Zhang, Guanghui Wang, Yafei Tang, Li Zhang. "Real-Time Visual Tracking: Promoting the Robustness of Correlation Filter Learning." ECCV (2016). [paper] [project]

  • Yao Sui, Guanghui Wang, Yafei Tang, Li Zhang. "Tracking Completion." ECCV (2016). [paper] [project]

  • EBT: Gao Zhu, Fatih Porikli, and Hongdong Li. "Beyond Local Search: Tracking Objects Everywhere with Instance-Specific Proposals." CVPR (2016). [paper] [exe]

  • RATM: Samira Ebrahimi Kahou, Vincent Michalski, Roland Memisevic. "RATM: Recurrent Attentive Tracking Model." arXiv (2015). [paper] [github]

  • DAT: Horst Possegger, Thomas Mauthner, and Horst Bischof. "In Defense of Color-based Model-free Tracking." CVPR (2015). [paper] [project] [code]

  • RAJSSC: Mengdan Zhang, Junliang Xing, Jin Gao, Xinchu Shi, Qiang Wang, Weiming Hu. "Joint Scale-Spatial Correlation Tracking with Adaptive Rotation Estimation." ICCV workshop (2015). [paper] [poster]

  • SO-DLT: Naiyan Wang, Siyi Li, Abhinav Gupta, Dit-Yan Yeung. "Transferring Rich Feature Hierarchies for Robust Visual Tracking." arXiv (2015). [paper] [code]

  • DLT: Naiyan Wang and Dit-Yan Yeung. "Learning A Deep Compact Image Representation for Visual Tracking." NIPS (2013). [paper] [project] [code]

  • Naiyan Wang, Jianping Shi, Dit-Yan Yeung and Jiaya Jia. "Understanding and Diagnosing Visual Tracking Systems." ICCV (2015). [paper] [project] [code]

  • Dataset-MoBe2016: Luka Čehovin, Alan Lukežič, Aleš Leonardis, Matej Kristan. "Beyond standard benchmarks: Parameterizing performance evaluation in visual object tracking." arXiv (2016). [paper]

  • Dataset-UAV123: Matthias Mueller, Neil Smith and Bernard Ghanem. "A Benchmark and Simulator for UAV Tracking." ECCV (2016) [paper] [project] [dataset]

  • Dataset-TColor-128: Pengpeng Liang, Erik Blasch, Haibin Ling. "Encoding color information for visual tracking: Algorithms and benchmark." TIP (2015) [paper] [project] [dataset]

  • Dataset-NUS-PRO: Annan Li, Min Lin, Yi Wu, Ming-Hsuan Yang, and Shuicheng Yan. "NUS-PRO: A New Visual Tracking Challenge." PAMI (2015) [paper] [project] [Data_360(code:bf28)] [Data_baidu]] [View_360(code:515a)][View_baidu]]

  • Dataset-PTB: Shuran Song and Jianxiong Xiao. "Tracking Revisited using RGBD Camera: Unified Benchmark and Baselines." ICCV (2013) [paper] [project] [5 validation] [95 evaluation]

  • Dataset-ALOV300+: Arnold W. M. Smeulders, Dung M. Chu, Rita Cucchiara, Simone Calderara, Afshin Dehghan, Mubarak Shah. "Visual Tracking: An Experimental Survey." PAMI (2014) [paper] [project] Mirror Link:ALOV300++ Dataset Mirror Link:ALOV300++ Groundtruth

  • Dataset-DTB70: Siyi Li, Dit-Yan Yeung. "Visual Object Tracking for Unmanned Aerial Vehicles: A Benchmark and New Motion Models." AAAI (2017) [paper] [project] [dataset]

  • Dataset-VOT: [project]

[VOT13_paper_ICCV]The Visual Object Tracking VOT2013 challenge results

[VOT14_paper_ECCV]The Visual Object Tracking VOT2014 challenge results

[VOT15_paper_ICCV]The Visual Object Tracking VOT2015 challenge results

[VOT16_paper_ECCV]The Visual Object Tracking VOT2016 challenge results

Distinguished Researchers & Teams

Distinguished visual tracking researchers who have published +3 papers which have a major impact on the field of visual tracking and are still active in the field of visual tracking.(Names listed in no particular order, I will continue to supplement this part.)

  • Ming-Hsuan Yang
  • Haibin Ling
  • Huchuan Lu
  • Hongdong Li
  • Lei Zhang
  • Xiaogang Wang
  • Matej Kristan
  • João F. Henriques
  • Martin Danelljan
  • Kaihua Zhang
  • Luca Bertinetto
  • Tianzhu Zhang
  • Torr Vision Group
  • Computer Vision Laboratory, POSTECH

Benchmark

  • Wu, Yi, Jongwoo Lim, and Minghsuan Yang. "Online Object Tracking: A Benchmark." CVPR (2013). [paper]
  • Wu, Yi, Jongwoo Lim, and Minghsuan Yang. "Object Tracking Benchmark." TPAMI (2015). [paper] [project]

你可能感兴趣的:(tracking)