关于TensorFlow 2.0 preview,在谷歌开源战略师 Edd Wilder-James 曾将公开的一封邮件就有介绍,TensorFlow 2.0 预览版将在今年正式发布,并称其是一个重大的里程碑。将会把重点放在易用性上,而 Eager Execution 将会是 TensorFlow 2.0 的核心功能。
注:“Eager Execution”是一个命令式、由运行定义的接口,一旦从 Python 被调用可立即执行操作,这使得
TensorFlow 的入门变得更简单,也使得研发工作变得更直观。
TensorFlow 2.0 preview终于上线了,看来稳定版距离我们也不会太远——按照官方说法会是今年的第一个季度。
谷歌表示,在过去几年里,TensorFlow 增加了很多组件。通过 TensorFlow 2.0 版本的大幅度重建,这些功能将被打包成为一个综合平台,支持从训练到部署的整个机器学习工作流程。下图简要展示了 TensorFlow 2.0 的新架构:
Note:虽然上图的训练部分侧重 Python API,但是 TensorFlow.js 也支持训练模型。TensorFlow 2.0 对其他语言也有不同程度的支持,包括 Swift、R 语言和 Julia。
2.0发布会还把TensorFlow目前的家底透露了一遍:目前TF在全球已经有超过4100万的下载次数,社区有超过1800多个贡献者。
发布会现场展示一张全球地图,但是没有透露中国社区的情况,这怎么可以?
官方图
下面是我用中文搜索引擎–百度指数统计通过搜索量数据来侧面观察下两个主流深度学习框架tensorflow 与pytorch的变化,得到的结果如下图:
上图是进一年以来国内的深度学习两个主流框架tensorflow 与pytorch之间的对比,很明显的可以看出
tensorflow远胜于pytorch.尤其在有TF2.0消息公布后,搜索指数差距拉大了。
从人群属性上来说20~29以及 30-39之间的人群来说,年轻化的人群更倾向于pytorch,老程序员更倾向于tensorflow。
安装环境
首先在系统上的支持:all in . 不过值得注意的是在2018Pytorch v0.4.0支持windows平台的。
CPU和GPU
TensorFlow 有针对的CPU和GPU安装模块,而 PyTorch并不像TensorFlow一样已经指定好CPU和GPU,如果在项目中想要同时支持GPU和CPU,将会产生更多代码。
安装过程
基于Anaconda 的两个深度学习模块都可以直接通过Pip来安装。
是否适合新手
TensorFlow 1.x与 PyTorch对比来说,个人认为PyTorch好些,但是在tensorflow 2.0发布后根据其新特性,Tensorflow 2.0 将于PyTorch不相上下。
下面是具体一些方面的对比:
PyTorch与TensorFlow 1
例如要计算 1 + ½ + ¼ + ⅛ + … ,使用 PyTorch 的代码明显比 TensorFlow 简单:
后来从 TensorFlow 1.4 开始,可以选择启动 eager 模式。
在 TensorFlow 2.0, eager execution 是默认的,不需要启用它:
可以发现eager 模式和 PyTorch 一样简单.
下面我们具体来看下2.0版本的新特性:2.0版本具有简易性、更清晰、扩展性三大特征,大大简化API;提高了TensorFlow Lite和TensorFlow.js部署模型的能力;
TensorFlow2.0 Alpha概括一下即:
诸如tf.keras等高级API将更易于使用;并且Eager execution将成为默认设置。
删除了重复的功能;不同API的调用语法更加一致、直观;兼容性更加完善。
提供完整的低级API;可在tf.raw_ops中访问内部操作;提供变量、checkpoint和层的可继承接口。
API清理
许多API 在TF 2.0中消失或移动。一些主要的变化包括删除tf.app,tf.flags与 tf.logging,支持开源的 absl-py(Google自己的Python代码库)。
Eager Execution 将成为核心功能
可能 TensorFlow 2.0 最明显的改变就是将 Eager execution 作为默认优先模式。这表明任何运算在调用后就会立即运行,我们不再需要预先定义静态图,再通过「tf.Session.run()」执行图的各个部分。
# TensorFlow 1.X
outputs = session.run(f(placeholder), feed_dict={placeholder: input})
# TensorFlow 2.0
outputs = f(input)
很多函数如 optimizer,loss,metrics 会统合到 Keras 中
关于代码转换:从TensorFlow1.0到2.0过渡我们使用 pip 安装 TensorFlow 2.0 时,系统会自动添加 tf_upgrade_v2(项目地址) ,它可将现有的 TensorFlow Python 代码转换为 TensorFlow 2.0 代码。
#使用方法:
!tf_upgrade_v2
# 选择 input file,输出 output file
tf_upgrade_v2 --infile foo.py --outfile foo-upgraded.py
# 将整个目录进行变换
tf_upgrade_v2 --intree coolcode --outtree coolcode-upgraded
为确保TensorFlow 2.0仍支持您的代码,升级脚本包含一个compat.v1模块。该模块替换TF
1.x符号tf.foo,与等效tf.compat.v1.foo参考一样。虽然兼容性模块很好,但我们建议您手动校对替换并将其迁移到tf.命名空间中的新API,而不是tf.compat.v1.。由于TensorFlow
2.x模块已弃用(例如,tf.flags和tf.contrib),因此切换到compat.v1某些无法解决更改。升级此代码可能需要使用其他库(例如absl.flags)或切换到tensorflow
/ addons中的包。
以上来源于官网
TensorFlow 2.0将原有的一个非常强大非常成熟的深度学习库进行了简化,重点是以keras为主,不知大家是否了解keras,根据官方标语,它是“为人类设计,不是为机器设计的API”。因此他在入门方面将大大优化, 如果你有以下需求,那么TensorFlow是一个很好的选择:
PyTorch仍然是一个年轻的框架,但其发展速度越来越快。如果你有以下需求,它可能会比较适合你:
https://github.com/tensorflow/docs/blob/master/site/en/r2/guide/effective_tf2.md
https://tensorflow.google.cn/
https://www.youtube.com/watch?v=WTNH0tcscqo&t=304s