统计每个学科最受欢迎的老师前N名

package day02

import java.net.URL

import org.apache.spark.rdd.RDD
import org.apache.spark.{Partitioner, SparkConf, SparkContext}

import scala.collection.mutable
/**
  * 统计每个学科最受欢迎的老师前N名
  *
  *利用TreeSet进行数据优化
  */
object SubjectAndTeacher04 {
  def main(args: Array[String]): Unit = {
    //定义分区的
    val topN=2
       //设置本地运行
    val conf =new SparkConf().setAppName("SubjectAndTeacher04").setMaster("local[*]")
        //初始化对象
    val sc =new SparkContext(conf)
        //从HDFS上读取数据
    val lines = sc.textFile("hdfs://hadoop01:9000/sparkTest")
    val subjectAndTeacher = lines.map(line => {
      val url = new URL(line)
      val subject = url.getHost.substring(0, url.getHost.indexOf("."))
      val teacher = url.getPath.substring(1)
      ((subject, teacher), 1)
    })
    //收集到所有的学科数据
    val subjects: Array[String] = subjectAndTeacher.map(_._1._1).distinct().collect()
    //自定义一个分区
    val subjectPartition = new SubjectPartition(subjects)
    //先进行局部聚合,再进行全局聚合
    val reduced: RDD[((String, String), Int)] = subjectAndTeacher.reduceByKey(subjectPartition,_+_)
    //将新分区后的数据进行排序处理
    reduced.foreachPartition(partition=>{
      //自定义一个排序规则
      val ts = new mutable.TreeSet[((String,String),Int)]()(new SubjectOrdering())
      //分区遍历
      partition.foreach(item=>{
        ts.add(item)
        if(ts.size>topN){
          ts.remove(ts.last)
         //ts = ts.dropRight(1)
        }
      })
      //第二种方法
//      while (partition.hasNext){
//        ts.add(partition.next())
//        if(ts.size > topN){
//          ts = ts.dropRight(1)
//        }
//      }
      println(ts.toList.toBuffer)
    })
    //输出数据
    //释放资源
    sc.stop()

  }
}

/**
  * 自定义排序规则
  */
class SubjectOrdering extends Ordering[((String,String),Int)]{
  override def compare(x: ((String, String), Int), y: ((String, String), Int)): Int = {
    //((学科,老师),票数)
    -(x._2.toInt - y._2.toInt)
  }
}

/**
  * 自定义一个分区
  * @param subjects
  */
class SubjectPartition(subjects :Array[String]) extends Partitioner{
  //初始化一个map,map中需要传递两个函数,一个是学科,一个是分区
   val rules = new mutable.HashMap[String,Int]()
    //定义一个分区
  var index =0
  for (subject <- subjects){
    rules += ((subject,index))
    index += 1
  }
  //定义分区的数量
  override def numPartitions: Int = subjects.length
//根据传入的key,返回对应的分区
  override def getPartition(key: Any): Int = {
    //key是元组对象,里面装的是学科和老师
    val tuple = key.asInstanceOf[Tuple2[String,String]]
    val subject = tuple._1
    rules(subject)
  }
}

java版本的

package day02;

import jdk.nashorn.internal.objects.NativeArray;
import org.apache.spark.Partitioner;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;

import java.net.URL;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Iterator;
import java.util.TreeSet;

/**
 * 统计每个学科最受欢迎的老师前N名
 *
 *利用TreeSet进行数据优化
 */
public class SubjectAndTeacherDemo {
    public static void main(String[] args) {
        //创建本地模式
        SparkConf conf = new SparkConf().setAppName("SubjectAndTeacherDemo").setMaster("local[*]");
        JavaSparkContext sc = new JavaSparkContext(conf);

        //读取数据
        JavaRDD lines = sc.textFile("hdfs://hadoop01:9000/sparkTest");
        //对数据进行处理
        JavaPairRDD, Integer> subjectAndTeacher = lines.mapToPair(new PairFunction, Integer>() {
            @Override
            public Tuple2, Integer> call(String s) throws Exception {
                URL url = new URL(s);
                String subject = url.getHost().substring(0, url.getHost().indexOf("."));
                String teacher = url.getPath().substring(1);
                return new Tuple2<>(new Tuple2(subject, teacher), 1);
            }
        });
        //收集到所有的分区数据,学科
        JavaPairRDD subjects = subjectAndTeacher.mapToPair(new PairFunction, Integer>, String, String>() {
            @Override
            public Tuple2 call(Tuple2, Integer> tp) throws Exception {
                return tp._1;
            }
        });
        //学科转成数组
        Object[] subjectArr = subjects.collectAsMap().keySet().toArray();
            //自定义一个分区
        MyPartitioner2 partitioner= new MyPartitioner2(subjectArr);
        //分区内聚合
        JavaPairRDD, Integer> reduced = subjectAndTeacher.reduceByKey(new Function2() {
            @Override
            public Integer call(Integer integer, Integer integer2) throws Exception {
                return integer + integer2;
            }
        });

        //分区内排序
        reduced.foreachPartition(new VoidFunction, Integer>>>() {
            @Override
            public void call(Iterator, Integer>> tuple2Iterator) throws Exception {
              TreeSet, Integer>> set=  new TreeSet<>(new Comparator, Integer>>() {
                  @Override
                  public int compare(Tuple2, Integer> o1, Tuple2, Integer> o2) {
                      return o2._2-o1._2;
                  }
              });
              while(tuple2Iterator.hasNext()){
                  set.add(tuple2Iterator.next());
                  if(set.size()>2){
                      set.remove(set.last());
                  }
              }
                Iterator, Integer>> iterator = set.iterator();
              while(iterator.hasNext()){
                  System.out.println(iterator.next());

                  //关闭资源
                  sc.stop();
              }
            }
        });
    }
}
class MyPartitioner2 extends Partitioner{
    Object[] subjectArr;
    HashMap map =new HashMap();
    public MyPartitioner2(){}

    public MyPartitioner2( Object[] subjectArr){
        this.subjectArr=subjectArr;
        String subject =null;
        int index =0;
        for (Object obj :subjectArr){
            subject=obj.toString();
            map.put(subject,index);
            index +=1;
        }
    }
    @Override
    public int numPartitions() {
        return subjectArr.length;
    }

    @Override
    public int getPartition(Object key) {
        Tuple2 tuple2=(Tuple2)key;
        String subject= tuple2._1;
        return map.get(subject);
    }
}

 

 

你可能感兴趣的:(Spark-core)