- 【ShuQiHere】《机器学习的进化史『下』:从神经网络到深度学习的飞跃》
ShuQiHere
机器学习深度学习神经网络
【ShuQiHere】引言:神经网络与深度学习的兴起在上篇文章中,我们回顾了机器学习的起源与传统模型的发展历程,如线性回归、逻辑回归和支持向量机(SVM)。然而,随着数据规模的急剧增长和计算能力的提升,传统模型在处理复杂问题时显得力不从心。在这种背景下,神经网络重新进入了研究者们的视野,并逐步演变为深度学习,成为解决复杂问题的强大工具。今天,我们将进一步探索从神经网络到深度学习的进化历程,揭示这些
- 神经网络深度学习梯度下降算法优化
海棠如醉
人工智能深度学习
【神经网络与深度学习】以最通俗易懂的角度解读[梯度下降法及其优化算法],这一篇就足够(很全很详细)_梯度下降在神经网络中的作用及概念-CSDN博客https://blog.51cto.com/u_15162069/2761936梯度下降数学原理
- 李宏毅机器学习笔记 2.回归
Simone Zeng
机器学习机器学习
最近在跟着Datawhale组队学习打卡,学习李宏毅的机器学习/深度学习的课程。课程视频:https://www.bilibili.com/video/BV1Ht411g7Ef开源内容:https://github.com/datawhalechina/leeml-notes本篇文章对应视频中的P3。另外,最近我也在学习邱锡鹏教授的《神经网络与深度学习》,会补充书上的一点内容。通过上一次课1.机器
- 深度学习路线,包括书籍和视频
jjm2002
深度学习深度学习人工智能
深度学习是一个广泛而快速发展的领域,涉及多种技术和应用。以下是一个深度学习学习路线,包括书籍和视频资源。入门阶段:理解基础知识:书籍:《深度学习》(DeepLearning)IanGoodfellow,YoshuaBengio和AaronCourville著。这是深度学习领域的权威书籍,适合初学者。书籍:《神经网络与深度学习》(NeuralNetworksandDeepLearning)Micha
- 神经网络与深度学习 Neural Networks and Deep Learning 课程笔记 第一周
林间得鹿
吴恩达深度学习系列课程笔记深度学习神经网络笔记
神经网络与深度学习NeuralNetworksandDeepLearning课程笔记第一周文章目录神经网络与深度学习NeuralNetworksandDeepLearning课程笔记第一周深度学习简介什么是神经网络使用神经网络进行监督学习为什么神经网络会兴起本文是吴恩达深度学习系列课程的学习笔记。深度学习简介什么是神经网络深度学习一般是指训练神经网络。那么什么是神经网络?课程以房价预测的例子来说明
- 小白初探|神经网络与深度学习
神奇的代码在哪里
人工智能深度学习神经网络人工智能外接显卡
一、学习背景由于工作的原因,需要开展人工智能相关的研究,虽然不用参与实际研发,但在项目实施过程中发现,人工智能的项目和普通程序开发项目不一样,门槛比较高,没有相关基础没法搞清楚人力、财力如何投入,很难合理管控成本以及时间。为搞清楚情况,老年博主决定一步一个脚印,好好自学。在写本文时,博主已学到一定阶段了,趁有时间,通过博文记录下来,以免遗忘。二、学习准备常年的学习告诉我们,一门学科要快速入门,主流
- 神经网络与深度学习Pytorch版 Softmax回归 笔记
砍树+c+v
深度学习神经网络pytorch人工智能python回归笔记
Softmax回归目录Softmax回归1.独热编码2.Softmax回归的网络架构是一个单层的全连接神经网络。3.Softmax回归模型概述及其在多分类问题中的应用4.Softmax运算在多分类问题中的应用及其数学原理5.小批量样本分类的矢量计算表达式6.交叉熵损失函数7.模型预测及评价8.小结Softmax回归,也称为多类逻辑回归,是一种用于解决多分类问题的机器学习算法。它与普通的logist
- 【吴恩达-神经网络与深度学习】第3周:浅层神经网络
倏然希然_
深度学习与神经网络神经网络深度学习人工智能
目录神经网络概览神经网络表示含有一个隐藏层的神经网络(双层神经网络)计算神经网络的输出多样本的向量化向量化实现的解释激活函数(Activationfunctions)一些选择激活函数的经验法则:为什么需要非线性激活函数?激活函数的导数神经网络的梯度下降法(选修)直观理解反向传播随机初始化神经网络概览右上角方括号[]里面的数字表示神经网络的层数可以把许多sigmoid单元堆叠起来形成一个神经网络:第
- 2023年度佳作:AIGC、AGI、GhatGPT、人工智能大语言模型的崛起与挑战
鸭鸭渗透
人工智能AIGCagi语言模型自然语言处理
目录前言01《ChatGPT驱动软件开发》内容简介02《ChatGPT原理与实战》内容简介03《神经网络与深度学习》04《AIGC重塑教育》内容简介05《通用人工智能》目录前言2023年是人工智能大语言模型大爆发的一年,一些概念和英文缩写也在这一年里集中出现,很容易混淆,甚至把人搞懵。LLM:LargeLanguageModel,即大语言模型,旨在理解和生成人类语言。LLM的特点是规模庞大,包含成
- Pytorch 实现强化学习策略梯度Reinforce算法
爱喝咖啡的加菲猫
强化学习强化学习神经网络pytorch
一、公式推导这里参考邱锡鹏大佬的《神经网络与深度学习》第三章进阶模型部分,链接《神经网络与深度学习》。`伪代码:二、核心代码defmain():env=gym.make('CartPole-v0')obs_n=env.observation_space.shape[0]act_n=env.action_space.nlogger.info('obs_n{},act_n{}'.format(obs_
- 基于图神经网络与深度学习的商品推荐算法
谦谦菜鸟
深度学习机器学习人工智能
传统做法现阶段局限创新方法结果相关工作目前推荐算法基于矩阵分解的推荐算法基于深度学习的推荐算法基于图神经网络的推荐算法创新点模型设计本文的核心任务是训练出一个模型LGDL模型框架嵌入层ID特征嵌入评论文本特征嵌入前向传播层关联关系提取偏好特征提取评分预测层模型优化传统做法利用深度学习方法从用户ID、评论文本等数据中提取其中所隐藏的用户物品特征,根据该特征预测用户对新物品的打分从而给出推荐是传统推荐
- 神经网络与深度学习(五)——人工神经网络和卷积神经网络
吴丞楚20012100032
姓名:吴丞楚学号:20012100032学院:竹园三号书院【嵌牛导读】简要介绍NN与CNN【嵌牛鼻子】深度学习神经网络【嵌牛提问】NN与CNN的区别有哪些人工神经网络简称神经网络(NN),是目前各种神经网络的基础,其构造是仿造生物神经网络,将神经元看成一个逻辑单元,其功能是用于对函数进行估计和近似,是一种自适应系统,通俗的讲就是具备学习能力。其作用,目前为止就了解到分类。其目的就是在圈和叉之间画出
- 学习笔记--神经网络与深度学习之卷积神经网络
qssssss79
深度学习神经网络深度学习学习
目录1.卷积1.1一维卷积1.2卷积的作用1.3卷积扩展1.4二维卷积1.5互相关2.卷积神经网络2.1用卷积代替全连接2.2卷积层2.3汇聚层(池化层)2.4卷积网络结构3.其它卷积种类3.1空洞卷积3.2转置卷积/微步卷积4典型的卷积神经网络4.1LeNet-54.2AlexNet4.3Inception4.4残差网络利用全连接前馈网络处理图像时的问题:(1)参数太多: 对于输入的10010
- 计划1
JLcucumber
1.吴恩达DL2021(强推|双字)2021版吴恩达深度学习课程Deeplearning.ai_哔哩哔哩_bilibiliPart1神经网络与深度学习(6+19+12+8)共45Part2训练、开发、测试集(14+10+11)共35Part3机器学习策略(13+11)共24Part4计算机视觉(11+14+14+(5+6))共50Part5序列模型(12+10+15)共372.经典网络模型论文ht
- [23-24 秋学期] NNDL-作业2 HBU
洛杉矶县牛肉板面
深度学习人工智能机器学习深度学习
前言:本文解决《神经网络与深度学习》-邱锡鹏第二章课后题。对于习题2-1,平方损失函数在机器学习课程中学习过,但是惭愧的讲,在完成这篇博客前我对均方误差和平方损失函数的概念还有些混淆。交叉熵损失函数我未曾了解过,只在决策树一节中学习过关于熵entropy的基本概念。借此机会弄清原理,并且尝试着学会应用它。对于习题2-12,考察对混淆矩阵的理解程度和计算。其中宏平均和微平均是我未曾学习过的概念,借此
- 【22-23 春学期】AI作业5-深度学习基础
HBU_David
AI深度学习人工智能python
人工智能、机器学习、深度学习之间的关系神经网络与深度学习的关系“深度学习”和“传统浅层学习”的区别和联系神经元、人工神经元MP模型单层感知机SLP异或问题XOR多层感知机MLP前馈神经网络FNN激活函数ActivationFunction为什么要使用激活函数?常用激活函数有哪些?均方误差和交叉熵损失函数,哪个适合于分类?哪个适合于回归?为什么?
- 神经网络与深度学习day01-基础知识
小鬼缠身、
深度学习神经网络人工智能python
今天开始新学期,然后就是每周要在这里发这周的实验报告,CSDN对不起了,你可能不情愿,但是必须要稍微容纳一下我(这个菜比)在这里吹了。第一周的基础知识训练:1、导入numpy库importnumpy2、建立一个一维数组a=[4,5,6]。输出:(1)a的类型;(2)a的各维度的大小;(3)a的第一个元素a=[4,5,6]print(type(a))print(numpy.shape(a))prin
- HBU_神经网络与深度学习 实验10 卷积神经网络:基于ResNet18网络完成图像分类任务
ZodiAc7
cnn深度学习python
目录写在前面的一些内容一、实践:基于ResNet18网络完成图像分类任务1.数据处理(1)数据集介绍(2)数据读取(3)构造Dataset类2.模型构建3.模型训练4.模型评价5.模型预测二、实验Q&A写在前面的一些内容本文为HBU_神经网络与深度学习实验(2022年秋)实验10的实验报告,此文的基本内容参照[1]Github/卷积神经网络-下.ipynb,检索时请按对应序号进行检索。本实验编程语
- Python练习题:猜数字游戏
BioVS
python开发语言
#题目来源于MOOC课程《神经网络与深度学习》,程序为自己独立编写题目:随机产生一个1-10之间的整数,并提示用户输入1-10的整数进行猜测,判断是否猜中。每次猜完后,提示“太大了”或者“太小了”,猜对之后提示“恭喜你,猜对了!”,并退出程序。当用户才出数字后,询问是否想要继续下一轮游戏,并记录显示用户已参加轮次。对应python程序:importrandomtimes=1#存放第几轮游戏,用于后
- 2023年度盘点:AIGC、AGI、GhatGPT、人工智能大模型必读书单
家有娇妻张兔兔
粉丝送书活动AIGCagi人工智能福利送书
2023年度盘点智能大模型必读书单概述好书推荐01《ChatGPT驱动软件开发》02《ChatGPT原理与实战》03《神经网络与深度学习》04《AIGC重塑教育》05《通用人工智能》写在末尾:主页传送门:传送送书系列:送书第一期:考研必备书单送书第二期:CTF那些事儿送书第三期:数据要素安全流通送书第四期:MLOps工程实践:工具、技术与企业级应用送书第五期:Python数据挖掘:入门进阶与实用案
- 搜索与人工智能
码海串游
人工智能
前言第一:通过博弈树搜索和启发式搜索的例子了解基于搜索的通用问题求解方法第二:了解人工智能发展的历程和社会影响第三:了解机器学习的基本思想和典型应用第四:了解人工智能应用开发的基本模式内容1.博弈树与剪纸、零和博弈,极大极小策略博弈树与搜索,α与β剪枝以及著名的计算机博弈的例子2.启发式搜索启发式函数,启发式搜索过程,3.人工智能与机器学习人工智能发展历程,专家系统,机器学习,神经网络与深度学习。
- 2023年度AI盘点 AIGC|AGI|ChatGPT|人工智能大模型
herosunly
优质书籍推荐人工智能AIGCagi
文章目录0.前言1.《ChatGPT驱动软件开发》2.《ChatGPT原理与实战》3.《神经网络与深度学习》4.《AIGC重塑教育》5.《通用人工智能》0.前言 2023年是人工智能大语言模型大爆发的一年,一些概念和英文缩写也在这一年里集中出现,很容易混淆,甚至把人搞懵。LLM:LargeLanguageModel,即大语言模型,旨在理解和生成人类语言。LLM的特点是规模庞大,包含成百、上千亿的
- DL Homework 11
熬夜患者
DLHomework人工智能深度学习
目录1.被优化函数编辑(代码来源于邱锡鹏老师的神经网络与深度学习的实验)L1.pyop.py(1)SimpleBatchGD(2)Adagrad(3)RMSprop(4)Momentum(5)Adam2.被优化函数编辑3.解释不同轨迹的形成原因,并分析各个算法的优缺点(1)SimpleBatchGD(2)Adagrad(3)RMSprop(4)Momentum(5)Adam总结在展开本次作业之前,
- 2020-12-07 吴恩达-神经网络与深度学习-第三周编程练习
Vivivivi安
Github地址:https://github.com/Poissons/wuenda-Deep-Learning-And-Neural-Network-third-week-excercise.git
- 2020-12-03 吴恩达-神经网络与深度学习-第二周编程练习
Vivivivi安
最近听吴恩达老师的课,写课后作业Github地址:https://github.com/Poissons/wuenda-Deep-Learning-And-Neural-Network-second-week-excercise
- 2023年度AI盘点 AIGC|AGI|ChatGPT|人工智能大模型
雪碧有白泡泡
粉丝福利活动人工智能AIGCagi
前言「作者主页」:雪碧有白泡泡「个人网站」:雪碧的个人网站2023年是人工智能大语言模型大爆发的一年,一些概念和英文缩写也在这一年里集中出现,很容易混淆,甚至把人搞懵。文章目录前言01《ChatGPT驱动软件开发》02《ChatGPT原理与实战》03《神经网络与深度学习》《AIGC重塑教育》05《通用人工智能》LLM:LargeLanguageModel,即大语言模型,旨在理解和生成人类语言。LL
- 年度大盘点:AIGC、AGI、GhatGPT震撼登场!揭秘人工智能大模型的奥秘与必读书单
洁洁!
externalAIGCagi人工智能
这里写目录标题前言01《ChatGPT驱动软件开发》02《ChatGPT原理与实战》03《神经网络与深度学习》04《AIGC重塑教育》05《通用人工智能》前言在2023年,人工智能领域经历了一场前所未有的大爆发,特别是在语言模型领域。新的概念和英文缩写如AIGC、AGI、GhatGPT等频繁出现,给人们带来了极大的困惑和好奇。这些突如其来的名词和缩写不仅让人摸不着头脑,还引发了对人工智能发展的种种
- 2023年度佳作:AIGC、AGI、GhatGPT、人工智能大语言模型的崛起与挑战
库库的里昂
杂谈人工智能AIGCagi语言模型自然语言处理
目录前言01《ChatGPT驱动软件开发》内容简介02《ChatGPT原理与实战》内容简介03《神经网络与深度学习》04《AIGC重塑教育》内容简介05《通用人工智能》目录前言2023年是人工智能大语言模型大爆发的一年,一些概念和英文缩写也在这一年里集中出现,很容易混淆,甚至把人搞懵。LLM:LargeLanguageModel,即大语言模型,旨在理解和生成人类语言。LLM的特点是规模庞大,包含成
- 循环神经网络-RNN记忆能力实验 [HBU]
洛杉矶县牛肉板面
深度学习rnn深度学习人工智能
目录一、循环神经网络二、循环神经网络的记忆能力实验三、数据集构建数据集的构建函数加载数据并进行数据划分构造Dataset类四、模型构建嵌入层SRN层五、模型训练训练指定长度的数字预测模型多组训练损失曲线展示六、模型评价参考《神经网络与深度学习》中的公式(6.50),改进SRN的循环单元,加入隐状态之间的残差连接,并重复数字求和实验。观察是否可以缓解长程依赖问题?总结参考原文章:aistudio.b
- [23-24 秋学期]NNDL 作业6 卷积 [HBU]
洛杉矶县牛肉板面
深度学习深度学习人工智能卷积神经网络
目录一、概念二、探究不同卷积核的作用后接:关于使用pycharm输出卷积图像后图片仍然不清晰的可能原因以及解决方法总结:前言:卷积常用于特征提取实验过程中注意认真体会“特征提取”,弄清楚为什么卷积能够提取特征。一、概念用自己的语言描述“卷积、卷积核、特征图、特征选择、步长、填充、感受野”。大致看了一遍邱锡鹏《神经网络与深度学习》的卷积一节。谈谈我对这些名词概念的理解(理解不足描述不准请见谅)。个人
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo