- Cut, Paste and Learn方法解读
wangxinwei2000
深度学习人工智能
Abstract问题背景:标注数据的缺乏:在实例检测任务中,部署物体检测模型的一个主要障碍是缺乏大量标注数据。例如,在一个特定的厨房环境中找到包含实例的大型标注数据集是不太可能的。每当面对新的环境和新的物体实例时,都需要进行昂贵的数据收集和标注工作。研究贡献:解决方法:本文提出了一种简单的方法,可以以最小的努力生成大量标注的实例数据集。关键洞察:研究者的关键洞察是,仅仅确保“局部真实感”(patc
- 在COD领域,图像中提取的高频和低频信息分别代表什么?
Wils0nEdwards
计算机视觉人工智能
在CamouflagedObjectDetection(COD)领域中,图像中的高频和低频信息在特征提取和物体检测中有着不同的含义和作用。COD的本质是解决目标在视觉上与背景高度相似的问题,因此合理利用图像的频率信息(高频和低频)有助于提高检测效果。高频信息高频信息指的是图像中变化迅速的部分,通常包括细节、边缘和纹理等特征。在COD中:高频信息代表图像中的边缘、细节和纹理特征。这些特征对于分割伪装
- 行空板上YOLO和Mediapipe图片物体检测的测试
DFRobot智位机器人
DF创客社区YOLO
Introduction经过前面三篇教程帖子(yolov8n在行空板上的运行(中文),yolov10n在行空板上的运行(中文),Mediapipe在行空板上的运行(中文))的介绍,我们对如何使用官方代码在行空板上运行物体检测的AI模型有了基本的概念,并对常见的模型进行了简单的测试和对比。进一步的,本文将对不同模型的图片物体检查进行详细的对比分析,包括不同输入尺寸、不同模型设置等方面的对比,并提供在
- Azure和Transformers的详细解释
漫天飞舞的雪花
azuremicrosoftpython
AzureAI是微软提供的人工智能(AI)解决方案的集合,旨在帮助开发人员、数据科学家和企业轻松构建和部署智能应用程序。以下是对AzureAI各个方面的详细解释:AzureAI主要组件AzureCognitiveServices(认知服务):计算视觉:包括图像识别、物体检测、人脸识别以及图像标注等。语音服务:包括语音识别、语音合成、说话人识别和语音翻译等。语言理解服务:包括文本分析、语言翻译、情感
- YOLOv8改进 | Conv篇 | YOLOv8引入SAConv模块
小李学AI
YOLOv8有效涨点专栏YOLO深度学习计算机视觉目标检测人工智能
1.SAConv介绍1.1摘要:许多现代物体检测器通过使用三思而后行的机制表现出出色的性能。在本文中,我们在目标检测的主干设计中探索了这种机制。在宏观层面,我们提出了递归特征金字塔,它将特征金字塔网络的额外反馈连接合并到自下而上的骨干层中。在微观层面,我们提出了可切换空洞卷积,它将具有不同空洞率的特征进行卷积,并使用开关函数收集结果。将它们结合起来就形成了DetectoRS,它显着提高了目标检测的
- 华为鸿蒙Core Vision Kit 骨骼检测技术
神码兄弟
华为harmonyos
鸿蒙CoreVisionKit是华为鸿蒙系统中的一个图像处理框架,旨在提供各种计算机视觉功能,包括物体检测、人脸识别、文本识别等。骨骼检测是其中的一项功能,主要用于检测和识别人类身体的骨骼结构。骨骼检测的关键点骨骼点检测:通过骨骼检测功能,可以识别出人体的关键骨骼点,如肩膀、肘部、膝盖等。每个骨骼点都有特定的坐标,可以用于进一步分析人体姿势。姿势估计:在检测到骨骼点后,系统可以进行姿势估计,即通过
- 论文阅读瞎记(四) Cascade R-CNN: Delving into High Quality Object Detection 2017
码大哥
深度学习人工智能
概述在物体检测中1,IOU阈值被用于判定正负样本。在低IOU阈值比如0.5的状态下训练模型经常产生噪音预测,然而检测效果会随着IOU增加而降低。两个主要因素:1.训练时的过拟合,正样本指数消失2.检测器最优IOU与输入假设的不匹配。一个单阶段的物体检测器CascadeR-CNN被提出用于解决这些问题。网络由一个检测序列组成,这些序列训练时会伴随IOU增长从而对FP样本更加有选择性地判别。检测器一个
- 基于yolov8的绝缘子缺陷检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO
【算法介绍】基于YOLOv8的绝缘子缺陷检测系统是一种利用先进深度学习技术的高效解决方案,旨在提升电力行业中输电线路的维护和监控水平。YOLOv8作为YOLO系列算法的最新版本,具备更高的检测速度和精度,特别适用于实时物体检测任务。该系统通过深入分析并标注绝缘子数据集,训练YOLOv8模型以精确识别输电线上的绝缘子及其缺陷状态。利用多尺度检测、FPN结构以及CSPDarknet网络等技术,YOLO
- 深度学习(十一):YOLOv9之最新的目标检测器解读
从零开始的奋豆
深度学习深度学习人工智能
YOLOv91.YOLOv9:物体检测技术的飞跃发展1.1YOLOv9简介1.2YOLOv9的核心创新1.2.1信息瓶颈:神经网络在抽取相关性时的理论边界1.2.2可逆函数:保留完整的信息流1.2.3对轻型模型的影响:解决信息丢失1.2.4可编程梯度信息(PGI):解决信息瓶颈1.2.5通用高效层聚合网络(GELAN):实现更高的参数利用率和计算效率1.2.6结论:合作与创新2.代码1.YOLOv
- 基于深度学习的自适应架构
SEU-WYL
深度学习dnn深度学习架构人工智能
基于深度学习的自适应架构是一种能够动态调整自身结构和参数的神经网络体系,以更好地适应不同的任务和环境需求。这类架构旨在提高模型的灵活性、效率和泛化能力,特别是在面对资源受限或任务多样化的情况下。以下是对该主题的详细介绍:1.背景与动机任务多样性:在现实世界中,模型可能需要处理各种不同的任务,如图像分类、物体检测、自然语言处理等。传统的固定架构模型往往难以在所有任务上都表现出色。资源受限环境:在边缘
- 挑战杯 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉
laafeer
python
文章目录0简介1二维码检测2算法实现流程3特征提取4特征分类5后处理6代码实现5最后0简介优质竞赛项目系列,今天要分享的是基于机器学习的二维码识别检测-opencv二维码识别检测机器视觉该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1二维码检测物体检测就是对数字图像中一类特定的物体
- 【机器学习案例7】计算机视觉中的小物体检测:基于补丁的方法
suoge223
机器学习实用指南机器学习计算机视觉人工智能
专栏导读作者简介:工学博士,高级工程师,专注于工业软件算法研究本文已收录于专栏:《机器学习实用指南》本专栏旨在提供1.机器学习经典案例及源码;2.开源机器学习训练数据集;3.机器学习前沿专业博文。以案例的形式从实用的角度出发,快速上手机器学习项目,在案例中成长,摆脱按部就班填鸭式教学。欢迎订阅专栏,订阅用户可私聊进入机器学习交流群(知识交流、问题解答),并获赠丰厚的机器学习相关学习资料(教材、源码
- Baumer工业相机堡盟相机彩色相机如何实现白平衡
格林威
工业相机数码相机opencvc++计算机视觉开发语言
项目场景Baumer工业相机堡盟相机是一种高性能、高质量的工业相机,可用于各种应用场景,如物体检测、计数和识别、运动分析和图像处理。Baumer的万兆网相机拥有出色的图像处理性能,可以实时传输高分辨率图像。此外,该相机还具有快速数据传输、低功耗、易于集成以及高度可扩展性等特点。Baumer工业相机中彩色相机具有色彩还原度真实的特性,适用于颜色分析的工业应用。技术背景Baumer工业彩色相机由于传感
- 『论文阅读|利用深度学习在热图像中实现无人机目标检测』
Dymc
深度学习目标检测论文论文阅读深度学习无人机
利用深度学习在热图像中实现无人机目标检测摘要1引言1.1小物体检测1.2物体检测中的模型组合1.3热图像处理2提出的模型2.1预测头数量2.2骨干网络优化2.3Transformerencoder模块2.4使用滑动窗口和注意力进行卷积2.5训练和运行过程3结果3.1数据集3.2评估指标和平台3.3评估结果4结论论文题目:ObjectDetectioninThermalImagesUsingDeep
- 『论文阅读|研究用于视障人士户外障碍物检测的 YOLO 模型』
Dymc
论文深度学习目标检测论文阅读YOLO
研究用于视障人士户外障碍物检测的YOLO模型摘要1引言2相关工作2.1障碍物检测的相关工作2.2物体检测和其他基于CNN的模型3问题的提出4方法4.1YOLO4.2YOLOv54.3YOLOv64.4YOLOv74.5YOLOv84.6YOLO-NAS5实验和结果5.1数据集和预处理5.2训练和实现细节5.3性能指标5.4性能分析5.4.1YOLOv5的结果5.4.2YOLOv6的结果5.4.3Y
- OpenCV 入门讲解
清水白石008
opencv计算机视觉opencv人工智能计算机视觉
OpenCV入门讲解OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉库,它提供了许多高效实现计算机视觉算法的函数,从基本的滤波到高级的物体检测都有涵盖。OpenCV使用C/C++开发,同时也提供了Python、Java、MATLAB等其他语言的接口。它是跨平台的,可以在Windows、Linux、MacOS、Android、iOS等操作系统上运行
- 如何探索和可视化用于图像中物体检测的 ML 数据
虚无火星车
python深度学习人工智能
近年来,人们越来越认识到深入理解机器学习数据(ML-data)的必要性。不过,鉴于检测大型数据集往往需要耗费大量人力物力,它在计算机视觉(computervision)领域的广泛应用,尚有待进一步开发。通常,在物体检测(ObjectDetection,属于计算机视觉的一个子集)中,通过定义边界框,来定位图像中的物体,不仅可以识别物体,还能够了解物体的上下文、大小、以及与场景中其他元素的关系。同时,
- 2.1.1 摄像头
构图笔记
自动驾驶笔记图像处理自动驾驶
摄像头更多内容,请关注:github:https://github.com/gotonote/Autopilot-Notes.git摄像头是目前自动驾驶车中应用和研究最广泛的传感器,其采集图像的过程最接近人类视觉系统。基于图像的物体检测和识别技术已经相当成熟,随着近几年深度学习的发展,基于深度学习的视觉感知算法已大量应用于实际生活和生产中,在某些任务上甚至已经超越人类水平。在自动驾驶车上,一般会安
- pytorch,cnn,rnn和yolo关系
小小娱乐
pytorchcnnrnn
卷积神经网络(ConvolutionalNeuralNetworks,CNN)和YOLO(YouOnly卷积神经网络(ConvolutionalNeuralNetworks,CNN)和YOLO(YouOnlyLookOnce)都是深度学习中的重要技术,它们在处理图像数据方面有着广泛的应用。CNN是一种以卷积为核心的神经网络,被广泛用于图像分类、物体检测等任务。YOLO则是一种基于CNN的目标检测算
- K210的入手试玩程序介绍
我先去打把游戏先
K210硬件stm32c语言开发语言K210
目录前言一、人脸检测二、物体检测三、RGB控制四、录音播放前言入手试玩程序下载好后,界面长这个样K210如何下载程序一、人脸检测1、点击进入人脸检测2、将其对准人脸,可以识别到人脸3、把右上角的按键向左拨动,可以返回主界面二、物体检测1、点击进入物体检测2、可以识别到物体3、同样的,右上角的按键向左波动退回到主界面三、RGB控制1、点击进入RGB控制2、点击对应的颜色,RGB就会亮对应的颜色3、L
- TBC(Tied Block Convolution):具有共享较薄滤波器的更简洁、更出色的CNN
静静AI学堂
高质量AI论文翻译cnn人工智能神经网络
文章目录摘要引言相关工作TiedBlockConvolution网络设计TBC公式化在瓶颈模块中的TBC/TGCTBC和TFC在注意力模块中的应用实验结果ImageNet分类物体检测和实例分割轻量级注意力消融研究总结补充资料物体检测和实例分割的详细结果额外的Grad-CAM可视化结果
- 科普:坐标系中几何变换及常见公式
9命怪猫
几何学计算机视觉几何学
几何变换”通常指的是对图像进行平移、旋转、缩放、翻转等操作,以改变图像的位置、大小和方向。这些几何变换常用于图像处理、计算机视觉和深度学习领域,用于数据增强、图像预处理、物体检测等任务。具体来说,几何变换包括以下几种主要操作:平移:将图像沿着水平和垂直方向移动一定的距离。旋转:围绕图像中心点或指定点进行旋转,改变图像的方向。缩放:按照指定的比例增大或缩小图像的尺寸。翻转:沿水平或垂直方向对图像进行
- 2.1.1 摄像头
人工智能
摄像头更多内容,请关注:github:https://github.com/gotonote/Autopilot-Notes.git摄像头是目前自动驾驶车中应用和研究最广泛的传感器,其采集图像的过程最接近人类视觉系统。基于图像的物体检测和识别技术已经相当成熟,随着近几年深度学习的发展,基于深度学习的视觉感知算法已大量应用于实际生活和生产中,在某些任务上甚至已经超越人类水平。在自动驾驶车上,一般会安
- Transformer实战-系列教程13:DETR 算法解读
机器学习杨卓越
Transformer实战transformer深度学习DETR物体检测
Transformer实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传点我下载源码1、物体检测说到目标检测你能想到什么faster-rcnn系列,开山之作,各种proposal方法YOLO肯定也少不了,都是基于anchor这路子玩的NMS那也一定得用上,输出结果肯定要过滤一下的如果一个目标检测算法,上面这三点都木有,你说神不神
- YOLOv8相关知识
Array902
深度学习YOLO深度学习机器学习人工智能计算机视觉
YOLOv8可以干点啥图像分类;物体检测;图像分割;姿势识别;计算机视觉经典任务经典框架经典数据集注意:训练的时候用训练集,并且每训练一会使用验证集来验证一下训练到什么程度了,需不需要调参数或者停止,在训练的时候同时使用训练集和验证集;训练完后使用测试集测试。YOLO是什么YOLO发展历程YOLOv8平台安装官方文档:https://docs.ultralytics.com/zh图像分类如何训练自
- OpenShift 4 - 在 OpenShift 上运行物体检测 AI/ML 应用
dawnsky.liu
openshift人工智能AIjupyter
《OpenShift/RHEL/DevSecOps汇总目录》说明:本文已经在OpenShift4.14+RHODS2.5.0的环境中验证说明:请先根据《OpenShift4-部署OpenShiftAI环境,运行AI/ML应用(视频)》一文完成OpenShiftAI环境的安装。注意:如无特殊说明,和OpenShiftAI相关的Blog均无需GPU。文章目录运行和部署后端模型运行测试后端模型将后端模型
- 举例说明计算机视觉(CV)技术的优势和挑战
做一个AC梦
计算机视觉
计算机视觉(CV)技术的优势:高速和准确性:计算机视觉技术可以处理大量的图像或视频数据,并以非常高的速度和准确性进行分析和识别。这使得它在许多领域中具有广泛的应用,如人脸识别、物体检测和图像分类等。自动化和效率:CV技术可以实现图像和视频的自动分析和处理,减少了人力资源的需求,并提高了工作效率。它可以帮助企业降低成本,并提高生产力。大规模应用:CV技术可以在各种场景中广泛应用,包括工业、医疗、安全
- 物体检测类型实验,华为云ModelArts数据管理功能新体验
叶一一yyy
华为云人工智能大数据
前言在零售行业的线下店铺中,最大的工作量之一便是检查货架的货品情况,及时理货补货。对于某些供需较大的货品,及时补充空缺,对提升消费者购物满意度有着重要的提升作用。然而,每个区域的货物成百上千,加上一些外界因素,比如店铺灯光、视觉盲区,这些因素叠加在一起,可能会影响店员对货物数量的感知。最近在研究AI和视觉识别,追踪货架上的货物情况。借助工具,实现店员对货架商品动态的了如指掌的场景,是我这次研究的主
- OpenCV学习记录——轮廓检测
KAIs32
树莓派——OpenCVopencv学习人工智能计算机视觉嵌入式硬件
文章目录前言一、寻找、绘制轮廓二、具体应用代码前言寻找目标图像的轮廓并绘制出该轮廓是我们进行图像识别时常用的手段,轮廓是图像中连续的边界线,可以用于物体检测、形状分析等应用。为了获取更高的准确性,会先进行二值化处理,在得到二进制图像后,寻找轮廓就是从黑色背景中找到白色物体,因此我们要找的对象应是白色,背景应该是黑色。一、寻找、绘制轮廓(一)寻找图像轮廓寻找图像轮廓函数如下:contours,hie
- YOLO系列详解(YOLO1-YOLO5)【实时物体检测算法】
super_journey
YOLO算法深度学习
YOLO是什么?YOLO,全称"YouOnlyLookOnce",是一种流行的实时物体检测算法。这种算法由JosephRedmon等人在2016年的论文"YouOnlyLookOnce:Unified,Real-TimeObjectDetection"中提出。与传统的物体检测方法(例如R-CNN系列)不同,YOLO将物体检测视为一个回归问题,直接从图像中预测物体的边界框和类别。这种方法的主要优点是
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key