图像滤镜艺术---换脸算法资源收集

https://github.com/Guikunzhi/BeautifyFaceDemo
https://github.com/alyssaq/face_morpher

http://life-in-a-monospace-typeface.tumblr.com/post/28495219189/quick-and-dirty-automatic-face-replacement-with

Image Morphing - local (non-parametric) warp
http://alumni.media.mit.edu/~maov/classes/comp_photo_vision08f/lect/07_Image%20Morphing.pdf

https://github.com/arturoc/FaceSubstitution
https://github.com/jorticus/face-replace

https://github.com/t0nyren/piecewiseAffine

https://github.com/royshil/HeadReplacement

https://github.com/trishume/faceHack

https://github.com/marsbroshok/face-replace

https://github.com/junyanz/FaceDemo

https://github.com/matthewearl/faceswap

http://home.elka.pw.edu.pl/%7Emkowals6/doku.php

https://github.com/takiyu/CLM

https://github.com/mc-jesus/FaceSwap

https://matthewearl.github.io/2015/07/28/switching-eds-with-python/

https://github.com/MarekKowalski/FaceSwap

http://alumni.media.mit.edu/~roys/identitytransfer-cgaieee2012/

https://github.com/HVisionSensing/FaceFlip

https://github.com/liaojing/Image-Morphing/tree/master/code

https://github.com/blendmaster/rigid-faces

https://github.com/hrastnik/FaceSwap

https://github.com/spmallick/learnopencv/tree/master/FaceMorph
https://github.com/spmallick/learnopencv/tree/master/FaceSwap

https://github.com/YuvalNirkin/face_swap

https://github.com/menpo/lsfm

#Deep learning
https://github.com/ddtm/deep-smile-warp
https://github.com/msracver/Deep-Image-Analogy
https://github.com/datitran/face2face-demo
https://github.com/ZZUTK/Face-Aging-CAAE
https://github.com/zo7/deconvfaces
3D
https://github.com/KeeganRen/FaceReconstruction
https://github.com/anhttran/3dmm_cnn

Video:
https://github.com/YuvalNirkin/face_video_segment


DeepFix: A Fully Convolutional Neural Network for predicting Human Eye Fixations

  • arxiv: http://arxiv.org/abs/1510.02927

Some like it hot - visual guidance for preference prediction

  • arxiv: http://arxiv.org/abs/1510.07867
  • demo: http://howhot.io/

Deep Learning Algorithms with Applications to Video Analytics for A Smart City: A Survey

  • arxiv: http://arxiv.org/abs/1512.03131

Deep Relative Attributes

  • intro: ACCV 2016
  • arxiv: http://arxiv.org/abs/1512.04103
  • github: https://github.com/yassersouri/ghiaseddin

Deep-Spying: Spying using Smartwatch and Deep Learning

  • arxiv: http://arxiv.org/abs/1512.05616
  • github: https://github.com/tonybeltramelli/Deep-Spying

Camera identification with deep convolutional networks

  • key word: copyright infringement cases, ownership attribution
  • arxiv: http://arxiv.org/abs/1603.01068

An Analysis of Deep Neural Network Models for Practical Applications

  • arxiv: http://arxiv.org/abs/1605.07678

8 Inspirational Applications of Deep Learning

  • intro: Colorization of Black and White Images, Adding Sounds To Silent Movies, Automatic Machine Translation Object Classification in Photographs, Automatic Handwriting Generation, Character Text Generation, Image Caption Generation, Automatic Game Playing
  • blog: http://machinelearningmastery.com/inspirational-applications-deep-learning/

16 Open Source Deep Learning Models Running as Microservices

  • intro: Places 365 Classifier, Deep Face Recognition, Real Estate Classifier, Colorful Image Colorization, Illustration Tagger, InceptionNet, Parsey McParseface, ArtsyNetworks
  • blog: http://blog.algorithmia.com/2016/07/open-source-deep-learning-algorithm-roundup/

Deep Cascaded Bi-Network for Face Hallucination

  • project page: http://mmlab.ie.cuhk.edu.hk/projects/CBN.html
  • arxiv: http://arxiv.org/abs/1607.05046

DeepWarp: Photorealistic Image Resynthesis for Gaze Manipulation

  • project page: http://yaroslav.ganin.net/static/deepwarp/
  • arxiv: http://arxiv.org/abs/1607.07215

Autoencoding Blade Runner

  • blog: https://medium.com/@Terrybroad/autoencoding-blade-runner-88941213abbe#.9kckqg7cq
  • github: https://github.com/terrybroad/Learned-Sim-Autoencoder-For-Video-Frames

A guy trained a machine to "watch" Blade Runner. Then things got seriously sci-fi.

http://www.vox.com/2016/6/1/11787262/blade-runner-neural-network-encoding

Deep Convolution Networks for Compression Artifacts Reduction

图像滤镜艺术---换脸算法资源收集_第1张图片

  • intro: ICCV 2015
  • project page(code): http://mmlab.ie.cuhk.edu.hk/projects/ARCNN.html
  • arxiv: http://arxiv.org/abs/1608.02778

Deep GDashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks

  • intro: Deep Genomic Dashboard (Deep GDashboard)
  • arxiv: http://arxiv.org/abs/1608.03644

Instagram photos reveal predictive markers of depression

  • arxiv: http://arxiv.org/abs/1608.03282

How an Algorithm Learned to Identify Depressed Individuals by Studying Their Instagram Photos

  • review: https://www.technologyreview.com/s/602208/how-an-algorithm-learned-to-identify-depressed-individuals-by-studying-their-instagram/

IM2CAD

  • arxiv: http://arxiv.org/abs/1608.05137

Fast, Lean, and Accurate: Modeling Password Guessability Using Neural Networks

  • paper: https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/melicher
  • github: https://github.com/cupslab/neural_network_cracking

Defeating Image Obfuscation with Deep Learning

  • arxiv: http://arxiv.org/abs/1609.00408

Detecting Music BPM using Neural Networks

图像滤镜艺术---换脸算法资源收集_第2张图片

  • keywords: BPM (Beats Per Minutes)
  • blog: https://nlml.github.io/neural-networks/detecting-bpm-neural-networks/
  • github: https://github.com/nlml/bpm

Generative Visual Manipulation on the Natural Image Manifold

图像滤镜艺术---换脸算法资源收集_第3张图片

  • intro: ECCV 2016
  • project page: https://people.eecs.berkeley.edu/~junyanz/projects/gvm/
  • arxiv: http://arxiv.org/abs/1609.03552
  • github: https://github.com/junyanz/iGAN

Deep Impression: Audiovisual Deep Residual Networks for Multimodal Apparent Personality Trait Recognition

  • arxiv: http://arxiv.org/abs/1609.05119

Deep Gold: Using Convolution Networks to Find Minerals

  • blog: https://hackernoon.com/deep-gold-using-convolution-networks-to-find-minerals-aafdb37355df#.lgh95ub4a
  • github: https://github.com/scottvallance/DeepGold

Predicting First Impressions with Deep Learning

  • arxiv: https://arxiv.org/abs/1610.08119

Judging a Book By its Cover

  • arxiv: https://arxiv.org/abs/1610.09204
  • review: https://www.technologyreview.com/s/602807/deep-neural-network-learns-to-judge-books-by-their-covers/

Image Credibility Analysis with Effective Domain Transferred Deep Networks

  • arxiv: https://arxiv.org/abs/1611.05328

A novel image tag completion method based on convolutional neural network

  • arxiv: https://www.arxiv.org/abs/1703.00586

Image operator learning coupled with CNN classification and its application to staff line removal

  • intro: ICDAR 2017
  • arxiv: https://arxiv.org/abs/1709.06476

Joint Image Filtering with Deep Convolutional Networks

  • intro: University of California, Merced & Virginia Tech & University of Illinois
  • project page: http://vllab1.ucmerced.edu/~yli62/DJF_residual/
  • arxiv: https://arxiv.org/abs/1710.04200
  • github: https://github.com/Yijunmaverick/DeepJointFilter

DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1704.02470
  • github: https://github.com/aiff22/DPED

Image-Text

Learning Two-Branch Neural Networks for Image-Text Matching Tasks

https://arxiv.org/abs/1704.03470

Dual-Path Convolutional Image-Text Embedding

https://arxiv.org/abs/1711.05535

Age Estimation

Deeply-Learned Feature for Age Estimation

  • paper: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7045931&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7045931

Age and Gender Classification using Convolutional Neural Networks

  • paper: http://www.openu.ac.il/home/hassner/projects/cnn_agegender/CNN_AgeGenderEstimation.pdf
  • project page: http://www.openu.ac.il/home/hassner/projects/cnn_agegender/
  • github: https://github.com/GilLevi/AgeGenderDeepLearning

Group-Aware Deep Feature Learning For Facial Age Estimation

  • paper: http://www.sciencedirect.com/science/article/pii/S0031320316303417

Local Deep Neural Networks for Age and Gender Classification

https://arxiv.org/abs/1703.08497

Understanding and Comparing Deep Neural Networks for Age and Gender Classification

https://arxiv.org/abs/1708.07689

Age Group and Gender Estimation in the Wild with Deep RoR Architecture

  • intro: IEEE ACCESS
  • arxiv: https://arxiv.org/abs/1710.02985

Face Aging

Recurrent Face Aging

  • paper: www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_Recurrent_Face_Aging_CVPR_2016_paper.pdf

Face Aging With Conditional Generative Adversarial Networks

  • arxiv: https://arxiv.org/abs/1702.01983

Emotion Recognition / Expression Recognition

Real-time emotion recognition for gaming using deep convolutional network features

  • paper: http://arxiv.org/abs/1408.3750v1
  • code: https://github.com/Zebreu/ConvolutionalEmotion

Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns

  • project page: http://www.openu.ac.il/home/hassner/projects/cnn_emotions/
  • paper: http://www.openu.ac.il/home/hassner/projects/cnn_emotions/LeviHassnerICMI15.pdf
  • github: https://gist.github.com/GilLevi/54aee1b8b0397721aa4b
  • blog: https://gilscvblog.com/2017/01/31/emotion-recognition-in-the-wild-via-convolutional-neural-networks-and-mapped-binary-patterns/

DeXpression: Deep Convolutional Neural Network for Expression Recognition

  • paper: http://arxiv.org/abs/1509.05371

DEX: Deep EXpectation of apparent age from a single image

图像滤镜艺术---换脸算法资源收集_第4张图片

  • intro: ICCV 2015
  • paper: https://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01229.pdf
  • homepage: https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

EmotioNet: EmotioNet: An accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild

  • intro: CVPR 2016
  • paper: http://cbcsl.ece.ohio-state.edu/cvpr16.pdf
  • database: http://cbcsl.ece.ohio-state.edu/dbform_emotionet.html

How Deep Neural Networks Can Improve Emotion Recognition on Video Data

  • intro: ICIP 2016
  • arxiv: http://arxiv.org/abs/1602.07377

Peak-Piloted Deep Network for Facial Expression Recognition

  • arxiv: http://arxiv.org/abs/1607.06997

Training Deep Networks for Facial Expression Recognition with Crowd-Sourced Label Distribution

  • arxiv: http://arxiv.org/abs/1608.01041

A Recursive Framework for Expression Recognition: From Web Images to Deep Models to Game Dataset

  • arxiv: http://arxiv.org/abs/1608.01647

FaceNet2ExpNet: Regularizing a Deep Face Recognition Net for Expression Recognition

  • arxiv: http://arxiv.org/abs/1609.06591

EmotionNet Challenge

  • homrepage: http://cbcsl.ece.ohio-state.edu/EmotionNetChallenge/index.html
  • dataset: http://cbcsl.ece.ohio-state.edu/dbform_emotionet.html

Baseline CNN structure analysis for facial expression recognition

  • intro: RO-MAN2016 Conference
  • arxiv: https://arxiv.org/abs/1611.04251

Facial Expression Recognition using Convolutional Neural Networks: State of the Art

  • arxiv: https://arxiv.org/abs/1612.02903

DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Network

  • arxiv: https://arxiv.org/abs/1702.04280
  • api: https://www.sighthound.com/products/cloud

Deep generative-contrastive networks for facial expression recognition

https://arxiv.org/abs/1703.07140

Convolutional Neural Networks for Facial Expression Recognition

https://arxiv.org/abs/1704.06756

End-to-End Multimodal Emotion Recognition using Deep Neural Networks

  • intro: Imperial College London
  • arxiv: https://arxiv.org/abs/1704.08619

Spatial-Temporal Recurrent Neural Network for Emotion Recognition

https://arxiv.org/abs/1705.04515

Facial Emotion Detection Using Convolutional Neural Networks and Representational Autoencoder Units

https://arxiv.org/abs/1706.01509

Temporal Multimodal Fusion for Video Emotion Classification in the Wild

https://arxiv.org/abs/1709.07200

Island Loss for Learning Discriminative Features in Facial Expression Recognition

https://arxiv.org/abs/1710.03144

Real-time Convolutional Neural Networks for Emotion and Gender Classification

https://arxiv.org/abs/1710.07557

Attribution Prediction

PANDA: Pose Aligned Networks for Deep Attribute Modeling

  • intro: Facebook. CVPR 2014
  • arxiv: http://arxiv.org/abs/1311.5591
  • github: https://github.com/facebook/pose-aligned-deep-networks

Predicting psychological attributions from face photographs with a deep neural network

  • arxiv: http://arxiv.org/abs/1512.01289

Learning Human Identity from Motion Patterns

  • arxiv: http://arxiv.org/abs/1511.03908

Pose Estimation

DeepPose: Human Pose Estimation via Deep Neural Networks

  • intro: CVPR 2014
  • arxiv: http://arxiv.org/abs/1312.4659
  • slides: http://140.122.184.143/paperlinks/Slides/DeepPose_HumanPose_Estimation_via_Deep_Neural_Networks.pptx
  • github: https://github.com/asanakoy/deeppose_tf

Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network

  • paper: www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W15/papers/LI_Heterogeneous_Multi-task_Learning_2014_CVPR_paper.pdf

Flowing ConvNets for Human Pose Estimation in Videos

  • arxiv: http://arxiv.org/abs/1506.02897
  • homepage: http://www.robots.ox.ac.uk/~vgg/software/cnn_heatmap/
  • github: https://github.com/tpfister/caffe-heatmap

Structured Feature Learning for Pose Estimation

  • arxiv: http://arxiv.org/abs/1603.09065
  • homepage: http://www.ee.cuhk.edu.hk/~xgwang/projectpage_structured_feature_pose.html

Convolutional Pose Machines

  • arxiv: http://arxiv.org/abs/1602.00134
  • github: https://github.com/shihenw/convolutional-pose-machines-release
  • github(PyTorch): https://github.com/tensorboy/pytorch_Realtime_Multi-Person_Pose_Estimation

Model-based Deep Hand Pose Estimation

  • paper: http://xingyizhou.xyz/zhou2016model.pdf
  • github: https://github.com/tenstep/DeepModel

Stacked Hourglass Networks for Human Pose Estimation

  • homepage: http://www-personal.umich.edu/~alnewell/pose/
  • arxiv: http://arxiv.org/abs/1603.06937
  • github: https://github.com/anewell/pose-hg-train
  • demo: https://github.com/anewell/pose-hg-demo

Chained Predictions Using Convolutional Neural Networks

  • intro: EECV 2016
  • keywords: CNN, structured prediction, RNN, human pose estimation
  • arxiv: http://arxiv.org/abs/1605.02346

DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model

  • arxiv: http://arxiv.org/abs/1605.03170
  • github: https://github.com/eldar/deepcut-cnn

Real-time Human Pose Estimation from Video with Convolutional Neural Networks

  • arxiv: http://arxiv.org/abs/1609.07420

Region Ensemble Network: Improving Convolutional Network for Hand Pose Estimation

  • arxiv: https://arxiv.org/abs/1702.02447

Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment with Limited Resources

  • project page: https://www.adrianbulat.com/binary-cnn-landmarks
  • arxiv: https://www.arxiv.org/abs/1703.00862

Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation

  • arxiv: https://arxiv.org/abs/1705.00389
  • video: http://v.qq.com/x/page/c039862eira.html
  • video: http://v.qq.com/x/page/f0398zcvkl5.html
  • video: http://v.qq.com/x/page/w0398ei9m1r.html

Human Pose Detection Mining Body Language from Videos

  • blog: https://medium.com/@samim/human-pose-detection-51268e95ddc2

OpenPose: A Real-Time Multi-Person Keypoint Detection And Multi-Threading C++ Library

  • intro: OpenPose is a library for real-time multi-person keypoint detection and multi-threading written in C++ using OpenCV and Caffe
  • github: https://github.com/CMU-Perceptual-Computing-Lab/openpose

Learning Feature Pyramids for Human Pose Estimation

  • arxiv: https://arxiv.org/abs/1708.01101
  • github: https://github.com/bearpaw/PyraNet

Multi-Context Attention for Human Pose Estimation

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1702.07432
  • github(Torch): https://github.com/bearpaw/pose-attention

Human Pose Estimation with TensorFlow

https://github.com/eldar/pose-tensorflow

Cascaded Pyramid Network for Multi-Person Pose Estimation

  • intro: Tsinghua University & HuaZhong Univerisity of Science and Technology & Megvii Inc
  • github: https://arxiv.org/abs/1711.07319

Sentiment Analysis / Sentiment Prediction

From Pixels to Sentiment: Fine-tuning CNNs for Visual Sentiment Prediction

  • arxiv: http://arxiv.org/abs/1604.03489
  • github: https://github.com/imatge-upc/sentiment-2016
  • gitxiv: http://gitxiv.com/posts/ruqRgXdPTHJ77LDEb/from-pixels-to-sentiment-fine-tuning-cnns-for-visual

Predict Sentiment From Movie Reviews Using Deep Learning

  • blog: http://machinelearningmastery.com/predict-sentiment-movie-reviews-using-deep-learning/

Neural Sentiment Classification with User and Product Attention

  • intro: EMNLP 2016
  • paper: http://www.thunlp.org/~chm/publications/emnlp2016_NSCUPA.pdf
  • github: https://github.com/thunlp/NSC

From Pixels to Sentiment: Fine-tuning CNNs for Visual Sentiment Prediction

  • intro: Accepted for publication in Image and Vision Computing
  • arxiv: https://arxiv.org/abs/1604.03489
  • github: https://github.com/imatge-upc/sentiment-2016

Visual and Textual Sentiment Analysis Using Deep Fusion Convolutional Neural Networks

  • intro: ICIP 2017
  • arxiv: https://arxiv.org/abs/1711.07798

Place Recognition

NetVLAD: CNN architecture for weakly supervised place recognition

图像滤镜艺术---换脸算法资源收集_第5张图片

  • intro: CVPR 2016
  • intro: Google Street View Time Machine, soft-assignment, Weakly supervised triplet ranking loss
  • homepage: http://www.di.ens.fr/willow/research/netvlad/
  • arxiv: http://arxiv.org/abs/1511.07247

PlaNet - Photo Geolocation with Convolutional Neural Networks

图像滤镜艺术---换脸算法资源收集_第6张图片

  • arxiv: http://arxiv.org/abs/1602.05314
  • review("Google Unveils Neural Network with “Superhuman” Ability to Determine the Location of Almost Any Image"): https://www.technologyreview.com/s/600889/google-unveils-neural-network-with-superhuman-ability-to-determine-the-location-of-almost/
  • github("City-Recognition: CS231n Project for Winter 2016"): https://github.com/dmakian/LittlePlaNet
  • github: https://github.com/wulfebw/LittlePlaNet-Models

Visual place recognition using landmark distribution descriptors

  • arxiv: http://arxiv.org/abs/1608.04274

Low-effort place recognition with WiFi fingerprints using deep learning

  • arxiv: https://arxiv.org/abs/1611.02049
  • github: https://github.com/aqibsaeed/Place-Recognition-using-Autoencoders-and-NN
  • github(Keras): https://github.com/mallsk23/place_recognition_wifi_fingerprints_deep_learning

Deep Learning Features at Scale for Visual Place Recognition

  • intro: ICRA 2017
  • arxiv: https://arxiv.org/abs/1701.05105

Place recognition: An Overview of Vision Perspective

https://arxiv.org/abs/1707.03470

Camera Relocalization

PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization

  • paper: http://arxiv.org/abs/1505.07427
  • project page: http://mi.eng.cam.ac.uk/projects/relocalisation/#results
  • github: https://github.com/alexgkendall/caffe-posenet
  • github(TensorFlow): https://github.com/kentsommer/tensorflow-posenet

Modelling Uncertainty in Deep Learning for Camera Relocalization

  • paper: http://arxiv.org/abs/1509.05909

Random Forests versus Neural Networks - What's Best for Camera Relocalization?

  • arxiv: http://arxiv.org/abs/1609.05797

Deep Convolutional Neural Network for 6-DOF Image Localization

  • arxiv: https://arxiv.org/abs/1611.02776

Image-based Localization with Spatial LSTMs

  • arxiv: https://arxiv.org/abs/1611.07890

VidLoc: 6-DoF Video-Clip Relocalization

  • arxiv: https://arxiv.org/abs/1702.06521

Towards CNN Map Compression for camera relocalisation

  • arxiv: https://www.arxiv.org/abs/1703.00845

Camera Relocalization by Computing Pairwise Relative Poses Using Convolutional Neural Network

  • intro: Aalto University & Indian Institute of Technology
  • arxiv: https://arxiv.org/abs/1707.09733

Counting Objects

Towards perspective-free object counting with deep learning

  • intro: ECCV 2016. Counting CNN and Hydra CNN
  • paper: http://agamenon.tsc.uah.es/Investigacion/gram/publications/eccv2016-onoro.pdf
  • github: https://github.com/gramuah/ccnn
  • poster: http://www.eccv2016.org/files/posters/P-3B-26.pdf

Using Convolutional Neural Networks to Count Palm Trees in Satellite Images

  • arxiv: https://arxiv.org/abs/1701.06462

Count-ception: Counting by Fully Convolutional Redundant Counting

https://arxiv.org/abs/1703.08710

Counting Objects with Faster R-CNN

  • blog: https://softwaremill.com/counting-objects-with-faster-rcnn/
  • github: https://github.com/softberries/keras-frcnn

Drone-based Object Counting by Spatially Regularized Regional Proposal Network

https://arxiv.org/abs/1707.05972

FCN-rLSTM: Deep Spatio-Temporal Neural Networks for Vehicle Counting in City Cameras

  • intro: ICCV 2017. CMU & Universidade de Lisboa
  • arxiv: https://arxiv.org/abs/1707.09476

Representation Learning by Learning to Count

  • intro: ICCV 2017 oral
  • arxiv: https://arxiv.org/abs/1708.06734

Leaf Counting with Deep Convolutional and Deconvolutional Networks

  • intro: ICCV 2017 Workshop on Computer Vision Problems in Plant Phenotyping
  • arxiv: https://arxiv.org/abs/1708.07570

Crowd Counting / Crowd Analysis

Large scale crowd analysis based on convolutional neural network

  • paper: http://www.sciencedirect.com/science/article/pii/S0031320315001259

Deep People Counting in Extremely Dense Crowds

  • intro: ACM 2015
  • paper: http://yangliang.github.io/pdf/sp055u.pdf

Crossing-line Crowd Counting with Two-phase Deep Neural Networks

  • intro: ECCV 2016
  • paper: http://www.ee.cuhk.edu.hk/~rzhao/project/crossline_eccv16/ZhaoLZWeccv16.pdf
  • poster: http://www.eccv2016.org/files/posters/P-3C-41.pdf

Cross-scene Crowd Counting via Deep Convolutional Neural Networks

  • intro: CVPR 2015
  • paper: http://www.ee.cuhk.edu.hk/~xgwang/papers/zhangLWYcvpr15.pdf

Single-Image Crowd Counting via Multi-Column Convolutional Neural Network

  • intro: CVPR 2016
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhang_Single-Image_Crowd_Counting_CVPR_2016_paper.pdf
  • paper: http://sist.shanghaitech.edu.cn/office/research/news/CVPR2016/paper/Single-Image%20Crowd%20Counting%20via%20Multi-Column%20Convolutional%20Neural%20Network.pdf
  • dataset(pwd: p1rv): http://pan.baidu.com/s/1gfyNBTh
  • slides: http://smartdsp.xmu.edu.cn/%E6%B1%87%E6%8A%A5pdf/crowd%20counting%E6%9E%97%E8%B4%A8%E9%94%90.pdf

CrowdNet: A Deep Convolutional Network for Dense Crowd Counting

  • intro: ACM Multimedia (MM) 2016
  • arxiv: http://arxiv.org/abs/1608.06197

Crowd Counting by Adapting Convolutional Neural Networks with Side Information

  • arxiv: https://arxiv.org/abs/1611.06748

Fully Convolutional Crowd Counting On Highly Congested Scenes

  • intro: VISAPP 2017
  • arxiv: https://arxiv.org/abs/1612.00220

Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction

  • intro: AAAI 2017
  • project page: https://www.microsoft.com/en-us/research/publication/deep-spatio-temporal-residual-networks-for-citywide-crowd-flows-prediction/
  • paper: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/ST-ResNet-AAAI17-Zhang.pdf
  • github: https://github.com/lucktroy/DeepST/tree/master/scripts/papers/AAAI17
  • ppt: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/DeepST-crowd-prediction.pptx
  • system: http://urbanflow.sigkdd.com.cn/

Multi-scale Convolutional Neural Networks for Crowd Counting

  • arxiv: https://arxiv.org/abs/1702.02359

Mixture of Counting CNNs: Adaptive Integration of CNNs Specialized to Specific Appearance for Crowd Counting

https://arxiv.org/abs/1703.09393

Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks - Counting, Detection, and Tracking

https://arxiv.org/abs/1705.10118

ResnetCrowd: A Residual Deep Learning Architecture for Crowd Counting, Violent Behaviour Detection and Crowd Density Level Classification

  • intro: AVSS 2017
  • arxiv: https://arxiv.org/abs/1705.10698

Image Crowd Counting Using Convolutional Neural Network and Markov Random Field

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1706.03725

A Survey of Recent Advances in CNN-based Single Image Crowd Counting and Density Estimation

https://arxiv.org/abs/1707.01202

Spatiotemporal Modeling for Crowd Counting in Videos

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1707.07890

CNN-based Cascaded Multi-task Learning of High-level Prior and Density Estimation for Crowd Counting

  • intro: AVSS 2017 (14th International Conference on Advanced Video and Signal Based Surveillance)
  • arxiv: https://arxiv.org/abs/1707.09605

Switching Convolutional Neural Network for Crowd Counting

  • intro: CVPR 2017. Indian Institute of Science
  • project page: http://val.serc.iisc.ernet.in/crowdcnn/
  • arxiv: https://arxiv.org/abs/1708.00199
  • github: https://github.com/val-iisc/crowd-counting-scnn

Generating High-Quality Crowd Density Maps using Contextual Pyramid CNNs

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1708.00953

Deep Spatial Regression Model for Image Crowd Counting

https://arxiv.org/abs/1710.09757

Crowd counting via scale-adaptive convolutional neural network

  • intro: Tencent Youtu Lab
  • arxiv: https://arxiv.org/abs/1711.04433

Activity Recognition

Implementing a CNN for Human Activity Recognition in Tensorflow

  • blog: http://aqibsaeed.github.io/2016-11-04-human-activity-recognition-cnn/
  • github: https://github.com/aqibsaeed/Human-Activity-Recognition-using-CNN

Concurrent Activity Recognition with Multimodal CNN-LSTM Structure

  • arxiv: https://arxiv.org/abs/1702.01638

CERN: Confidence-Energy Recurrent Network for Group Activity Recognition

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1704.03058

Deploying Tensorflow model on Andorid device for Human Activity Recognition

  • blog: http://aqibsaeed.github.io/2017-05-02-deploying-tensorflow-model-andorid-device-human-activity-recognition/
  • github: https://github.com/aqibsaeed/Human-Activity-Recognition-using-CNN/tree/master/ActivityRecognition

Music Classification / Sound Classification

Explaining Deep Convolutional Neural Networks on Music Classification

  • arxiv: http://arxiv.org/abs/1607.02444
  • blog: https://keunwoochoi.wordpress.com/2015/12/09/ismir-2015-lbd-auralisation-of-deep-convolutional-neural-networks-listening-to-learned-features-auralization/
  • blog: https://keunwoochoi.wordpress.com/2016/03/23/what-cnns-see-when-cnns-see-spectrograms/
  • github: https://github.com/keunwoochoi/Auralisation
  • audio samples: https://soundcloud.com/kchoi-research

Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification

  • project page: http://www.stat.ucla.edu/~yang.lu/project/deepFrame/main.html
  • arxiv: http://arxiv.org/abs/1608.04363

Convolutional Recurrent Neural Networks for Music Classification

图像滤镜艺术---换脸算法资源收集_第7张图片

  • arxiv: http://arxiv.org/abs/1609.04243
  • blog: https://keunwoochoi.wordpress.com/2016/09/15/paper-is-out-convolutional-recurrent-neural-networks-for-music-classification/
  • github: https://github.com/keunwoochoi/music-auto_tagging-keras

CNN Architectures for Large-Scale Audio Classification

  • intro: Google
  • arxiv: https://arxiv.org/abs/1609.09430
  • demo: https://www.youtube.com/watch?v=oAAo_r7ZT8U&feature=youtu.be

SoundNet: Learning Sound Representations from Unlabeled Video

  • intro: MIT. NIPS 2016
  • project page: http://projects.csail.mit.edu/soundnet/
  • arxiv: https://arxiv.org/abs/1610.09001
  • paper: http://web.mit.edu/vondrick/soundnet.pdf
  • github: https://github.com/cvondrick/soundnet
  • github: https://github.com/eborboihuc/SoundNet-tensorflow
  • youtube: https://www.youtube.com/watch?v=yJCjVvIY4dU

Deep Learning 'ahem' detector

  • github: https://github.com/worldofpiggy/deeplearning-ahem-detector
  • slides: https://docs.google.com/presentation/d/1QXQEOiAMj0uF2_Gafr2bn-kMniUJAIM1PLTFm1mUops/edit#slide=id.g35f391192_00
  • mirror: https://pan.baidu.com/s/1c2KGlwO

GenreFromAudio: Finding the genre of a song with Deep Learning

  • intro: A pipeline to build a dataset from your own music library and use it to fill the missing genres
  • github: https://github.com/despoisj/DeepAudioClassification

TS-LSTM and Temporal-Inception: Exploiting Spatiotemporal Dynamics for Activity Recognition

  • arxiv: https://arxiv.org/abs/1703.10667
  • github: https://github.com/chihyaoma/Activity-Recognition-with-CNN-and-RNN

On the Robustness of Deep Convolutional Neural Networks for Music Classification

  • intro: Queen Mary University of London & New York University
  • arxiv: https://arxiv.org/abs/1706.02361

NSFW Detection / Classification

Nipple Detection using Convolutional Neural Network

  • reddit: https://www.reddit.com/over18?dest=https%3A%2F%2Fwww.reddit.com%2Fr%2FMachineLearning%2Fcomments%2F33n77s%2Fandroid_app_nipple_detection_using_convolutional%2F

Applying deep learning to classify pornographic images and videos

  • arxiv: http://arxiv.org/abs/1511.08899

MODERATE, FILTER, OR CURATE ADULT CONTENT WITH CLARIFAI’S NSFW MODEL

  • blog: http://blog.clarifai.com/moderate-filter-or-curate-adult-content-with-clarifais-nsfw-model/#.VzVhM-yECZY

WHAT CONVOLUTIONAL NEURAL NETWORKS LOOK AT WHEN THEY SEE NUDITY

  • blog: http://blog.clarifai.com/what-convolutional-neural-networks-see-at-when-they-see-nudity#.VzVh_-yECZY

Open Sourcing a Deep Learning Solution for Detecting NSFW Images

  • intro: Yahoo
  • blog: https://yahooeng.tumblr.com/post/151148689421/open-sourcing-a-deep-learning-solution-for
  • github: https://github.com/yahoo/open_nsfw

Miles Deep - AI Porn Video Editor

  • intro: Deep Learning Porn Video Classifier/Editor with Caffe
  • github: https://github.com/ryanjay0/miles-deep

Image Reconstruction / Inpainting

Context Encoders: Feature Learning by Inpainting

  • intro: CVPR 2016
  • intro: Unsupervised Feature Learning by Image Inpainting using GANs
  • project page: http://www.cs.berkeley.edu/~pathak/context_encoder/
  • arxiv: https://arxiv.org/abs/1604.07379
  • github(official): https://github.com/pathak22/context-encoder
  • github: https://github.com/BoyuanJiang/context_encoder_pytorch

Semantic Image Inpainting with Perceptual and Contextual Losses

Semantic Image Inpainting with Deep Generative Models

  • keywords: Deep Convolutional Generative Adversarial Network (DCGAN)
  • arxiv: http://arxiv.org/abs/1607.07539
  • github: https://github.com/bamos/dcgan-completion.tensorflow

High-Resolution Image Inpainting using Multi-Scale Neural Patch Synthesis

  • intro: University of Southern California & Adobe Research
  • arxiv: https://arxiv.org/abs/1611.09969

Face Image Reconstruction from Deep Templates

https://www.arxiv.org/abs/1703.00832

Deep Learning-Guided Image Reconstruction from Incomplete Data

https://arxiv.org/abs/1709.00584

Learning to Inpaint for Image Compression

https://arxiv.org/abs/1709.08855

Image Restoration

Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections

  • intro: NIPS 2016
  • arxiv: http://arxiv.org/abs/1603.09056

Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections

  • arxiv: http://arxiv.org/abs/1606.08921

Image Completion with Deep Learning in TensorFlow

  • blog: http://bamos.github.io/2016/08/09/deep-completion/

Deeply Aggregated Alternating Minimization for Image Restoration

  • arxiv: https://arxiv.org/abs/1612.06508

A New Convolutional Network-in-Network Structure and Its Applications in Skin Detection, Semantic Segmentation, and Artifact Reduction

  • intro: Seoul National University
  • arxiv: https://arxiv.org/abs/1701.06190

Generative Face Completion

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1704.05838

MemNet: A Persistent Memory Network for Image Restoration

  • intro: ICCV 2017 (Spotlight presentation)
  • arxiv: https://arxiv.org/abs/1708.02209
  • github: https://github.com/tyshiwo/MemNet

Deep Mean-Shift Priors for Image Restoration

  • intro: NIPS 2017
  • arxiv: https://arxiv.org/abs/1709.03749

xUnit: Learning a Spatial Activation Function for Efficient Image Restoration

https://arxiv.org/abs/1711.06445

Image Super-Resolution

Super-Resolution.Benckmark

  • intro: Benchmark and resources for single super-resolution algorithms
  • github: https://github.com/huangzehao/Super-Resolution.Benckmark

Image Super-Resolution Using Deep Convolutional Networks

  • intro: Microsoft Research
  • project page: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
  • arxiv: http://arxiv.org/abs/1501.00092
  • training code: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN/SRCNN_train.zip
  • test code: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN/SRCNN_v1.zip
  • github(Keras): https://github.com/titu1994/Image-Super-Resolution

Learning a Deep Convolutional Network for Image Super-Resolution

  • Baidu-pan: http://pan.baidu.com/s/1c0k0wRu

Shepard Convolutional Neural Networks

  • paper: https://papers.nips.cc/paper/5774-shepard-convolutional-neural-networks.pdf
  • github: https://github.com/jimmy-ren/vcnn_double-bladed/tree/master/applications/Shepard_CNN

Bidirectional Recurrent Convolutional Networks for Multi-Frame Super-Resolution

  • intro: NIPS 2015
  • paper: https://papers.nips.cc/paper/5778-bidirectional-recurrent-convolutional-networks-for-multi-frame-super-resolution

Deeply-Recursive Convolutional Network for Image Super-Resolution

  • intro: CVPR 2016
  • arxiv: http://arxiv.org/abs/1511.04491
  • paper: http://cv.snu.ac.kr/publication/conf/2016/DRCN_CVPR2016.pdf

Accurate Image Super-Resolution Using Very Deep Convolutional Networks

  • intro: CVPR 2016 Oral
  • project page: http://cv.snu.ac.kr/research/VDSR/
  • arxiv: http://arxiv.org/abs/1511.04587
  • code: http://cv.snu.ac.kr/research/VDSR/VDSR_code.zip
  • github: https://github.com/huangzehao/caffe-vdsr
  • github(Torch): https://github.com/pby5/vdsr_torch

Super-Resolution with Deep Convolutional Sufficient Statistics

  • arxiv: http://arxiv.org/abs/1511.05666

Deep Depth Super-Resolution : Learning Depth Super-Resolution using Deep Convolutional Neural Network

  • arxiv: http://arxiv.org/abs/1607.01977

Local- and Holistic- Structure Preserving Image Super Resolution via Deep Joint Component Learning

  • arxiv: http://arxiv.org/abs/1607.07220

End-to-End Image Super-Resolution via Deep and Shallow Convolutional Networks

  • arxiv: http://arxiv.org/abs/1607.07680

Accelerating the Super-Resolution Convolutional Neural Network

  • intro: speed up of more than 40 times with even superior restoration quality, real-time performance on a generic CPU
  • project page: http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html
  • arxiv: http://arxiv.org/abs/1608.00367

srez: Image super-resolution through deep learning

  • github: https://github.com/david-gpu/srez

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

  • arxiv: https://arxiv.org/abs/1609.04802
  • github(Torch): https://github.com/leehomyc/Photo-Realistic-Super-Resoluton
  • github: https://github.com/junhocho/SRGAN
  • github(Keras): https://github.com/titu1994/Super-Resolution-using-Generative-Adversarial-Networks
  • github: https://github.com/buriburisuri/SRGAN

Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network

  • intro: CVPR 2016
  • arxiv: http://arxiv.org/abs/1609.05158
  • github: https://github.com/Tetrachrome/subpixel

Is the deconvolution layer the same as a convolutional layer?

  • intro: A note on Real­Time Single Image and Video Super­Resolution Using an Efficient Sub­Pixel Convolutional Neural Network.
  • arxiv: http://arxiv.org/abs/1609.07009

Amortised MAP Inference for Image Super-resolution

  • arxiv: https://arxiv.org/abs/1610.04490

Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation

  • arxiv: https://arxiv.org/abs/1611.05250

Super-Resolution on Satellite Imagery using Deep Learning

  • part 1: https://medium.com/the-downlinq/super-resolution-on-satellite-imagery-using-deep-learning-part-1-ec5c5cd3cd2#.4oxn9pafu

Neural Enhance: Super Resolution for images using deep learning.

  • github: https://github.com/alexjc/neural-enhance
  • docker: https://github.com/alexjc/neural-enhance/blob/master/docker-cpu.df

Texture Enhancement via High-Resolution Style Transfer for Single-Image Super-Resolution

  • intro: Digital Media & Communications R&D Center, Samsung Electronics, Seoul, Korea
  • arxiv: https://arxiv.org/abs/1612.00085

EnhanceNet: Single Image Super-Resolution through Automated Texture Synthesis

  • arxiv: https://arxiv.org/abs/1612.07919

Learning a Mixture of Deep Networks for Single Image Super-Resolution

  • project page: http://www.ifp.illinois.edu/~dingliu2/accv2016/
  • arxiv: https://arxiv.org/abs/1701.00823
  • code: http://www.ifp.illinois.edu/~dingliu2/accv2016/codes/python_accv2016.zip

Dual Recovery Network with Online Compensation for Image Super-Resolution

  • arxiv: https://arxiv.org/abs/1701.05652

Super-resolution Using Constrained Deep Texture Synthesis

  • intro: Brown University & Georgia Institute of Technology
  • arxiv: https://arxiv.org/abs/1701.07604

Pixel Recursive Super Resolution

  • arxiv: https://arxiv.org/abs/1702.00783
  • github(Tensorflow): https://github.com/nilboy/pixel-recursive-super-resolution

GUN: Gradual Upsampling Network for single image super-resolution

  • arxiv: https://arxiv.org/abs/1703.04244

Single Image Super-resolution with a Parameter Economic Residual-like Convolutional Neural Network

  • intro: Extentions of mmm 2017 paper
  • arxiv: https://arxiv.org/abs/1703.08173

Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution

  • intro: CVPR 2017
  • project page(code+dataset): http://vllab1.ucmerced.edu/~wlai24/LapSRN/
  • arxiv: https://arxiv.org/abs/1704.03915
  • github(Matlab+MatConvNet): https://github.com/phoenix104104/LapSRN

Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks

  • project page: http://vllab.ucmerced.edu/wlai24/LapSRN/
  • arxiv: https://arxiv.org/abs/1710.01992
  • github: https://github.com/phoenix104104/LapSRN

Single Image Super-Resolution Using Multi-Scale Convolutional Neural Network

  • intro: South China University of Technology
  • arxiv: https://arxiv.org/abs/1705.05084

Super-Resolution via Deep Learning

  • intro: COMSATS Institute of IT (CIIT)
  • arxiv: https://arxiv.org/abs/1706.09077

High-Quality Face Image SR Using Conditional Generative Adversarial Networks

https://arxiv.org/abs/1707.00737

Enhanced Deep Residual Networks for Single Image Super-Resolution

  • intro: CVPR 2017 workshop. Best paper award of the NTIRE2017 workshop, and the winners of the NTIRE2017 Challenge on Single Image Super-Resolution
  • arxiv: https://arxiv.org/abs/1707.02921
  • paper: http://cv.snu.ac.kr/publication/conf/2017/EDSR_fixed.pdf
  • github: https://github.com/LimBee/NTIRE2017

Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network

  • arxiv: https://arxiv.org/abs/1707.05425
  • github(Tensorflow): https://github.com/jiny2001/dcscn-super-resolution

Single Image Super-Resolution with Dilated Convolution based Multi-Scale Information Learning Inception Module

  • intro: ICIP 2017
  • arxiv: https://arxiv.org/abs/1707.07128

Attention-Aware Face Hallucination via Deep Reinforcement Learning

https://arxiv.org/abs/1708.03132

CISRDCNN: Super-resolution of compressed images using deep convolutional neural networks

https://arxiv.org/abs/1709.06229

Deep Inception-Residual Laplacian Pyramid Networks for Accurate Single Image Super-Resolution

  • intro: Chongqing University
  • arxiv: https://arxiv.org/abs/1711.05431

D-PCN: Parallel Convolutional Neural Networks for Image Recognition in Reverse Adversarial Style

{https://arxiv.org/abs/1711.04237}(https://arxiv.org/abs/1711.04237)

CT-SRCNN: Cascade Trained and Trimmed Deep Convolutional Neural Networks for Image Super Resolution

  • intro: IEEE Winter Conf. on Applications of Computer Vision (WACV) 2018, Lake Tahoe, USA
  • arxiv: https://arxiv.org/abs/1711.04048

Video Super-resolution

Detail-revealing Deep Video Super-resolution

  • arxiv: https://arxiv.org/abs/1704.02738
  • github: https://github.com/jiangsutx/SPMC_VideoSR

End-to-End Learning of Video Super-Resolution with Motion Compensation

  • intro: GCPR 2017
  • arxiv: https://arxiv.org/abs/1707.00471

Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

  • arxiv: http://arxiv.org/abs/1608.03981
  • github: https://github.com/cszn/DnCNN

Medical image denoising using convolutional denoising autoencoders

  • arxiv: http://arxiv.org/abs/1608.04667

Rectifier Neural Network with a Dual-Pathway Architecture for Image Denoising

  • arxiv: http://arxiv.org/abs/1609.03024

Non-Local Color Image Denoising with Convolutional Neural Networks

  • arxiv: https://arxiv.org/abs/1611.06757

Joint Visual Denoising and Classification using Deep Learning

  • intro: ICIP 2016
  • arxiv: https://arxiv.org/abs/1612.01075
  • github: https://github.com/ganggit/jointmodel

Deep Convolutional Denoising of Low-Light Images

  • arxiv: https://arxiv.org/abs/1701.01687

Deep Class Aware Denoising

  • arxiv: https://arxiv.org/abs/1701.01698

End-to-End Learning for Structured Prediction Energy Networks

  • intro: University of Massachusetts & CMU
  • arxiv: https://arxiv.org/abs/1703.05667

Block-Matching Convolutional Neural Network for Image Denoising

https://arxiv.org/abs/1704.00524

When Image Denoising Meets High-Level Vision Tasks: A Deep Learning Approach

https://arxiv.org/abs/1706.04284

Wide Inference Network for Image Denoising

https://arxiv.org/abs/1707.05414

Learning Pixel-Distribution Prior with Wider Convolution for Image Denoising

  • arxiv: https://arxiv.org/abs/1707.09135
  • github(MatConvNet): https://github.com/cswin/WIN

Image Denoising via CNNs: An Adversarial Approach

  • intro: Indian Institute of Science
  • arxiv: https://arxiv.org/abs/1708.00159

An ELU Network with Total Variation for Image Denoising

  • intro: 24th International Conference on Neural Information Processing (2017)
  • arxiv: https://arxiv.org/abs/1708.04317

Dilated Residual Network for Image Denoising

https://arxiv.org/abs/1708.05473

FFDNet: Toward a Fast and Flexible Solution for CNN based Image Denoising

  • arxiv: https://arxiv.org/abs/1710.04026
  • github(MatConvNet): https://github.com/cszn/FFDNet

Universal Denoising Networks : A Novel CNN-based Network Architecture for Image Denoising

https://arxiv.org/abs/1711.07807

Image Haze Removal

DehazeNet: An End-to-End System for Single Image Haze Removal

  • arxiv: http://arxiv.org/abs/1601.07661

An All-in-One Network for Dehazing and Beyond

  • intro: All-in-One Dehazing Network (AOD-Net)
  • arxiv: https://arxiv.org/abs/1707.06543

Joint Transmission Map Estimation and Dehazing using Deep Networks

https://arxiv.org/abs/1708.00581

End-to-End United Video Dehazing and Detection

https://arxiv.org/abs/1709.03919

Image Dehazing using Bilinear Composition Loss Function

https://arxiv.org/abs/1710.00279

Learning Aggregated Transmission Propagation Networks for Haze Removal and Beyond

https://arxiv.org/abs/1711.06787

Image Rain Removal / De-raining

Clearing the Skies: A deep network architecture for single-image rain removal

  • intro: DerainNet
  • project page: http://smartdsp.xmu.edu.cn/derainNet.html
  • arxiv: http://arxiv.org/abs/1609.02087
  • code(Matlab): http://smartdsp.xmu.edu.cn/memberpdf/fuxueyang/derainNet/code.zip

Joint Rain Detection and Removal via Iterative Region Dependent Multi-Task Learning

  • arxiv: http://arxiv.org/abs/1609.07769

Image De-raining Using a Conditional Generative Adversarial Network

  • arxiv: https://arxiv.org/abs/1701.05957

Fence Removal

Deep learning based fence segmentation and removal from an image using a video sequence

  • intro: ECCV Workshop on Video Segmentation, 2016
  • arxiv: http://arxiv.org/abs/1609.07727

Snow Removal

DesnowNet: Context-Aware Deep Network for Snow Removal

https://arxiv.org/abs/1708.04512

Blur Detection and Removal

Learning to Deblur

  • arxiv: http://arxiv.org/abs/1406.7444

Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal

  • arxiv: http://arxiv.org/abs/1503.00593

End-to-End Learning for Image Burst Deblurring

  • arxiv: http://arxiv.org/abs/1607.04433

Deep Video Deblurring

  • intro: CVPR 2017 spotlight paper
  • project page(code+dataset): http://www.cs.ubc.ca/labs/imager/tr/2017/DeepVideoDeblurring/
  • arxiv: https://arxiv.org/abs/1611.08387 https://github.com/shuochsu/DeepVideoDeblurring

Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring

  • arxiv: https://arxiv.org/abs/1612.02177
  • github(official. Torch)): https://github.com/SeungjunNah/DeepDeblur_release

From Motion Blur to Motion Flow: a Deep Learning Solution for Removing Heterogeneous Motion Blur

  • arxiv: https://arxiv.org/abs/1612.02583

Motion Deblurring in the Wild

  • arxiv: https://arxiv.org/abs/1701.01486

Deep Face Deblurring

https://arxiv.org/abs/1704.08772

Learning Blind Motion Deblurring

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1708.04208

Deep Generative Filter for Motion Deblurring

https://arxiv.org/abs/1709.03481

DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks

  • arxiv: https://arxiv.org/abs/1711.07064
  • github: https://github.com/KupynOrest/DeblurGAN

Image Compression

An image compression and encryption scheme based on deep learning

  • arxiv: http://arxiv.org/abs/1608.05001

Full Resolution Image Compression with Recurrent Neural Networks

  • arxiv: http://arxiv.org/abs/1608.05148
  • github: https://github.com/tensorflow/models/tree/master/compression

Image Compression with Neural Networks

  • blog: https://research.googleblog.com/2016/09/image-compression-with-neural-networks.html

Lossy Image Compression With Compressive Autoencoders

  • paper: http://openreview.net/pdf?id=rJiNwv9gg
  • review: http://qz.com/835569/twitter-is-getting-close-to-making-all-your-pictures-just-a-little-bit-smaller/

End-to-end Optimized Image Compression

  • arxiv: https://arxiv.org/abs/1611.01704
  • notes: https://blog.acolyer.org/2017/05/08/end-to-end-optimized-image-compression/

CAS-CNN: A Deep Convolutional Neural Network for Image Compression Artifact Suppression

  • arxiv: https://arxiv.org/abs/1611.07233

Semantic Perceptual Image Compression using Deep Convolution Networks

  • intro: Accepted to Data Compression Conference
  • intro: Semantic JPEG image compression using deep convolutional neural network (CNN)
  • arxiv: https://arxiv.org/abs/1612.08712
  • github: https://github.com/iamaaditya/image-compression-cnn

Generative Compression

  • intro: MIT
  • arxiv: https://arxiv.org/abs/1703.01467

Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks

https://arxiv.org/abs/1703.10114

Learning Convolutional Networks for Content-weighted Image Compression

https://arxiv.org/abs/1703.10553

Real-Time Adaptive Image Compression

  • intro: ICML 2017
  • keywords: GAN
  • project page: http://www.wave.one/icml2017
  • arxiv: https://arxiv.org/abs/1705.05823

Image Quality Assessment

Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment

  • arxiv: https://arxiv.org/abs/1612.01697

Image Matting

Deep Image Matting

  • intro: CVPR 2017
  • intro: Beckman Institute for Advanced Science and Technology & Adobe Research
  • arxiv: https://arxiv.org/abs/1703.03872

Fast Deep Matting for Portrait Animation on Mobile Phone

  • intro: ACM Multimedia Conference (MM) 2017
  • intro: does not need any interaction and can realize real-time matting with 15 fps
  • arxiv: https://arxiv.org/abs/1707.08289

Image Blending

GP-GAN: Towards Realistic High-Resolution Image Blending

  • project page: https://wuhuikai.github.io/GP-GAN-Project/
  • arxiv: https://arxiv.org/abs/1703.07195
  • github(Official, Chainer): https://github.com/wuhuikai/GP-GAN

Image Enhancement

Deep Bilateral Learning for Real-Time Image Enhancement

  • intro: MIT & Google Research
  • arxiv: https://arxiv.org/abs/1707.02880

Aesthetic-Driven Image Enhancement by Adversarial Learning

  • intro: CUHK
  • arxiv: https://arxiv.org/abs/1707.05251

Abnormality Detection / Anomaly Detection

Toward a Taxonomy and Computational Models of Abnormalities in Images

  • arxiv: http://arxiv.org/abs/1512.01325

Depth Prediction / Depth Estimation

Deep Convolutional Neural Fields for Depth Estimation from a Single Image

  • intro: CVPR 2015
  • arxiv: https://arxiv.org/abs/1411.6387

Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields

  • intro: IEEE T. Pattern Analysis and Machine Intelligence
  • arxiv: https://arxiv.org/abs/1502.07411
  • bitbucket: https://bitbucket.org/fayao/dcnf-fcsp

Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

  • intro: ECCV 2016
  • arxiv: https://arxiv.org/abs/1603.04992
  • github: https://github.com/Ravi-Garg/Unsupervised_Depth_Estimation

Depth from a Single Image by Harmonizing Overcomplete Local Network Predictions

  • intro: NIPS 2016
  • project pag: http://ttic.uchicago.edu/~ayanc/mdepth/
  • arxiv: http://arxiv.org/abs/1605.07081
  • github: https://github.com/ayanc/mdepth/

Deeper Depth Prediction with Fully Convolutional Residual Networks

  • arxiv: https://arxiv.org/abs/1606.00373
  • github: https://github.com/iro-cp/FCRN-DepthPrediction

Single image depth estimation by dilated deep residual convolutional neural network and soft-weight-sum inference

https://arxiv.org/abs/1705.00534

Monocular Depth Estimation with Hierarchical Fusion of Dilated CNNs and Soft-Weighted-Sum Inference

  • intro: Northwestern Polytechnical University
  • arxiv: https://arxiv.org/abs/1708.02287

Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Image

  • arxiv: https://arxiv.org/abs/1709.07492
  • video: https://www.youtube.com/watch?v=vNIIT_M7x7Y
  • github: https://github.com/fangchangma/sparse-to-dense

Texture Synthesis

Texture Synthesis Using Convolutional Neural Networks

  • arxiv: http://arxiv.org/abs/1505.07376

Texture Networks: Feed-forward Synthesis of Textures and Stylized Images

  • intro: IMCL 2016
  • arxiv: http://arxiv.org/abs/1603.03417
  • github: https://github.com/DmitryUlyanov/texture_nets
  • notes: https://blog.acolyer.org/2016/09/23/texture-networks-feed-forward-synthesis-of-textures-and-stylized-images/

Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

  • arxiv: http://arxiv.org/abs/1604.04382
  • github(Torch): https://github.com/chuanli11/MGANs

Texture Synthesis with Spatial Generative Adversarial Networks

  • arxiv: https://arxiv.org/abs/1611.08207

Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis

  • intro: Skolkovo Institute of Science and Technology & Yandex & University of Oxford
  • arxiv: https://arxiv.org/abs/1701.02096

Deep TEN: Texture Encoding Network

  • intro: CVPR 2017
  • project page: http://zhanghang1989.github.io/DeepEncoding/
  • arxiv: https://arxiv.org/abs/1612.02844
  • github: https://github.com/zhanghang1989/Deep-Encoding
  • notes: https://zhuanlan.zhihu.com/p/25013378

Diversified Texture Synthesis with Feed-forward Networks

  • intro: CVPR 2017. University of California & Adobe Research
  • arxiv: https://arxiv.org/abs/1703.01664
  • github: https://github.com/Yijunmaverick/MultiTextureSynthesis

Image Cropping

A2-RL: Aesthetics Aware Reinforcement Learning for Automatic Image Cropping

https://arxiv.org/abs/1709.04595

Deep Cropping via Attention Box Prediction and Aesthetics Assessment

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1710.08014

Image Synthesis

Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis

  • arxiv: http://arxiv.org/abs/1601.04589

Generative Adversarial Text to Image Synthesis

图像滤镜艺术---换脸算法资源收集_第8张图片

  • intro: ICML 2016
  • arxiv: http://arxiv.org/abs/1605.05396
  • github(Tensorflow): https://github.com/paarthneekhara/text-to-image

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

  • intro: Rutgers University & Lehigh University & The Chinese University of Hong Kong & University of North Carolina at Charlotte
  • arxiv: https://arxiv.org/abs/1612.03242
  • github: https://github.com/hanzhanggit/StackGAN
  • github: https://github.com/brangerbriz/docker-StackGAN

Image Tagging

Fast Zero-Shot Image Tagging

  • project: http://crcv.ucf.edu/projects/fastzeroshot/

Flexible Image Tagging with Fast0Tag

图像滤镜艺术---换脸算法资源收集_第9张图片

  • blog: https://gab41.lab41.org/flexible-image-tagging-with-fast0tag-681c6283c9b7

Sampled Image Tagging and Retrieval Methods on User Generated Content

  • arxiv: https://arxiv.org/abs/1611.06962
  • github: https://github.com/lab41/attalos

Kill Two Birds with One Stone: Weakly-Supervised Neural Network for Image Annotation and Tag Refinement

  • intro: AAAI 2018
  • arxiv: https://arxiv.org/abs/1711.06998

Image Matching

Learning Fine-grained Image Similarity with Deep Ranking

  • intro: CVPR 2014
  • intro: Triplet Sampling
  • arxiv: http://arxiv.org/abs/1404.4661

Learning to compare image patches via convolutional neural networks

  • intro: CVPR 2015. siamese network
  • project page: http://imagine.enpc.fr/~zagoruys/deepcompare.html
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zagoruyko_Learning_to_Compare_2015_CVPR_paper.pdf
  • github: https://github.com/szagoruyko/cvpr15deepcompare

MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

  • intro: CVPR 2015. siamese network
  • paper: http://www.cs.unc.edu/~xufeng/cs/papers/cvpr15-matchnet.pdf
  • extended abstract: http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2A_114_ext.pdf
  • github: https://github.com/hanxf/matchnet

Fashion Style in 128 Floats

图像滤镜艺术---换脸算法资源收集_第10张图片

  • intro: CVPR 2016. StyleNet
  • project page: http://hi.cs.waseda.ac.jp/~esimo/en/research/stylenet/
  • paper: http://hi.cs.waseda.ac.jp/~esimo/publications/SimoSerraCVPR2016.pdf
  • github: https://github.com/bobbens/cvpr2016_stylenet

Fully-Trainable Deep Matching

  • intro: BMVC 2016
  • project page: http://lear.inrialpes.fr/src/deepmatching/
  • arxiv: http://arxiv.org/abs/1609.03532

Local Similarity-Aware Deep Feature Embedding

  • intro: NIPS 2016
  • arxiv: https://arxiv.org/abs/1610.08904

Convolutional neural network architecture for geometric matching

  • intro: CVPR 2017. Inria
  • project page: http://www.di.ens.fr/willow/research/cnngeometric/
  • arxiv: https://arxiv.org/abs/1703.05593
  • github: https://github.com/ignacio-rocco/cnngeometric_matconvnet

Multi-Image Semantic Matching by Mining Consistent Features

https://arxiv.org/abs/1711.07641

Image Editing

Neural Photo Editing with Introspective Adversarial Networks

图像滤镜艺术---换脸算法资源收集_第11张图片

  • intro: Heriot-Watt University
  • arxiv: http://arxiv.org/abs/1609.07093
  • github: https://github.com/ajbrock/Neural-Photo-Editor

Deep Feature Interpolation for Image Content Changes

  • intro: CVPR 2017. Cornell University & Washington University
  • arxiv: https://arxiv.org/abs/1611.05507
  • github(official): https://github.com/paulu/deepfeatinterp
  • github: https://github.com/slang03/dfi-tensorflow

Invertible Conditional GANs for image editing

图像滤镜艺术---换脸算法资源收集_第12张图片

  • intro: NIPS 2016 Workshop on Adversarial Training
  • arxiv: https://arxiv.org/abs/1611.06355
  • github: https://github.com/Guim3/IcGAN

Semantic Facial Expression Editing using Autoencoded Flow

  • intro: University of Illinois at Urbana-Champaign & The Chinese University of Hong Kong & Google
  • arxiv: https://arxiv.org/abs/1611.09961

Language-Based Image Editing with Recurrent Attentive Models

https://arxiv.org/abs/1711.06288

Face Swap

Fast Face-swap Using Convolutional Neural Networks

  • intro: Ghent University & Twitter
  • arxiv: https://arxiv.org/abs/1611.09577

Face Editing

Neural Face Editing with Intrinsic Image Disentangling

  • intro: CVPR 2017 oral
  • project page: http://www3.cs.stonybrook.edu/~cvl/content/neuralface/neuralface.html
  • arxiv: https://arxiv.org/abs/1704.04131

Deep Learning for Makeup

Makeup like a superstar: Deep Localized Makeup Transfer Network

  • intro: IJCAI 2016
  • arxiv: http://arxiv.org/abs/1604.07102

Makeup-Go: Blind Reversion of Portrait Edit

  • intro: The Chinese University of Hong Kong & Tencent Youtu Lab
  • paper: http://openaccess.thecvf.com/content_ICCV_2017/papers/Chen_Makeup-Go_Blind_Reversion_ICCV_2017_paper.pdf
  • paper: http://open.youtu.qq.com/content/file/iccv17_makeupgo.pdf

Music Tagging

Automatic tagging using deep convolutional neural networks

  • arxiv: https://arxiv.org/abs/1606.00298
  • github: https://github.com/keunwoochoi/music-auto_tagging-keras

Music tagging and feature extraction with MusicTaggerCRNN

https://keras.io/applications/#music-tagging-and-feature-extraction-with-musictaggercrnn

Action Recognition

Single Image Action Recognition by Predicting Space-Time Saliency

https://arxiv.org/abs/1705.04641

Attentional Pooling for Action Recognition

  • intro: NIPS 2017
  • project page: https://rohitgirdhar.github.io/AttentionalPoolingAction/
  • arxiv: https://arxiv.org/abs/1711.01467
  • github: https://github.com/rohitgirdhar/AttentionalPoolingAction/

CTR Prediction

Deep CTR Prediction in Display Advertising

  • intro: ACM Multimedia Conference 2016
  • arxiv: https://arxiv.org/abs/1609.06018

DeepFM: A Factorization-Machine based Neural Network for CTR Prediction

  • intro: Harbin Institute of Technology & Huawei
  • arxiv: https://arxiv.org/abs/1703.04247

Deep Interest Network for Click-Through Rate Prediction

  • intro: Alibaba Inc.
  • arxiv: https://arxiv.org/abs/1706.06978

Image Matters: Jointly Train Advertising CTR Model with Image Representation of Ad and User Behavior

  • intro: Alibaba Inc.
  • arxiv: https://arxiv.org/abs/1711.06505

Cryptography

Learning to Protect Communications with Adversarial Neural Cryptography

  • intro: Google Brain
  • arxiv: https://arxiv.org/abs/1610.06918
  • github(Theano): https://github.com/nlml/adversarial-neural-crypt
  • github(TensorFlow): https://github.com/ankeshanand/neural-cryptography-tensorflow

Adversarial Neural Cryptography in Theano

  • blog: https://nlml.github.io/neural-networks/adversarial-neural-cryptography/

Embedding Watermarks into Deep Neural Networks

  • arxiv: https://arxiv.org/abs/1701.04082
  • github: https://github.com/yu4u/dnn-watermark

Cyber Security

Collection of Deep Learning Cyber Security Research Papers

  • blog: https://medium.com/@jason_trost/collection-of-deep-learning-cyber-security-research-papers-e1f856f71042#.fcus2cu9m

Lip Reading

LipNet: Sentence-level Lipreading

LipNet: End-to-End Sentence-level Lipreading

  • arxiv: https://arxiv.org/abs/1611.01599
  • paper: http://openreview.net/pdf?id=BkjLkSqxg
  • github: https://github.com/bshillingford/LipNet

Lip Reading Sentences in the Wild

  • intro: University of Oxford & Google DeepMind
  • arxiv: https://arxiv.org/abs/1611.05358
  • youtube: https://www.youtube.com/watch?v=5aogzAUPilE

Combining Residual Networks with LSTMs for Lipreading

  • arxiv: https://arxiv.org/abs/1703.04105

End-to-End Multi-View Lipreading

  • intro: BMVC 2017
  • arxiv: https://arxiv.org/abs/1709.00443

Event Recognition

Better Exploiting OS-CNNs for Better Event Recognition in Images

  • arxiv: http://arxiv.org/abs/1510.03979

Transferring Object-Scene Convolutional Neural Networks for Event Recognition in Still Images

  • arxiv: http://arxiv.org/abs/1609.00162

IOD-CNN: Integrating Object Detection Networks for Event Recognition

https://arxiv.org/abs/1703.07431

Others

Selfai: Predicting Facial Beauty in Selfies

Selfai: A Method for Understanding Beauty in Selfies

  • blog: http://www.erogol.com/selfai-predicting-facial-beauty-selfies/
  • github: https://github.com/erogol/beauty.torch

Deep Learning Enables You to Hide Screen when Your Boss is Approaching

  • blog: http://ahogrammer.com/2016/11/15/deep-learning-enables-you-to-hide-screen-when-your-boss-is-approaching/
  • github: https://github.com/Hironsan/BossSensor

Blogs

40 Ways Deep Learning is Eating the World

https://medium.com/intuitionmachine/the-ultimate-deep-learning-applications-list-434d1425da1d#.rxq8xvbfz

Applications

http://www.deeplearningpatterns.com/doku.php/applications

Systematic Approach To Applications Of Deep Learning

https://gettocode.com/2016/11/25/systematic-approach-to-applications-of-deep-learning/

Resources

Deep Learning Gallery - a curated collection of deep learning projects

http://deeplearninggallery.com/

你可能感兴趣的:(图像滤镜艺术)