AOV网:用顶点表示活动,用弧表示活动间的优先关系的有向图称为顶点表示活动的网络(Activity On Vertex Network),简称AOV-网。
AOE网:在一个表示工程的带权有向图中,用顶点表示事件,用有向边表示活动,用边上的权值表示活动的持续时间,这种有向图的边表示活动的网,我们称之为AOE网(Activity On Edge Network)
{路径长度:路径上各个活动所持续的时间之和
关键路径:从源点到汇点具有最大长度的路径
关键活动:在关键路径上的活动}
拓扑排序:对一个有向图构造拓扑序列的过程。
关键路径:由于在AOE网中有些活动可以并行地进行,所以完成工程的最短时间是从开始点到完成点的最长路径的长度(这里所说的路径长度是指路径上各活动持续时间之和,不是路径上弧的数目)。路径长度最长的路径叫做关键路径。
从AOV网中选择一个入度为0的顶点输出,然后删去此顶点,并删除以此顶点为尾的弧,继续重复此步骤,直到输出全部顶点或者AOV网中不存在入读为0的顶点为止。
(拓扑排序的过程中,需要删除顶点,显然用邻接表会更加方便。考虑到算法过程中始终要查找入度为0的顶点,因此我们设置一个indegree数组,用来存放各顶点的入度数目。)
拓扑排序主要是为解决一个工程能否顺序进行的问题,但有时我们还需要解决工程完成需要的最短时间问题。我们如果要对一个流程图获得最短时间,就必须要分析它们的拓扑关系,并且找到当中最关键的流程。这个流程的时间就是最短时间。
一个活动的最早开始时间= 最晚开始时间,则该活动是关键活动,活动间的路径是关键路径。
拓扑排序
#include
#include
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#define TRUE 1
#define FALSE 0
#define STACK_INIT_SIZE 10
#define STACKINCREMENT 2
#define MAX_VERTEX_SIZE 20
#define INFINITY INT_MAX
typedef int Status;
typedef int InfoType;
typedef int VertexType;
typedef int VRType;
typedef enum {DG,DN,UDG,UDN} GraphKind;
typedef int SElemType;
typedef struct
{
SElemType *base,*top;
int stacksize;
}SqStack;
typedef struct ArcNode
{
VRType adjvex;
int weight;
struct ArcNode *next;
}ArcNode;
typedef struct VNode
{
VertexType data;
ArcNode *firstarc;
}VNode,AdjList[MAX_VERTEX_SIZE];
typedef struct
{
int vexnum,arcnum;
AdjList vertices;
GraphKind kind;
}ALGraph;
Status InitStack(SqStack *S);
Status DestroyStack(SqStack *S);
Status Push(SqStack *S, SElemType e);
Status Pop(SqStack *S, SElemType *e);
Status StackEmpty(SqStack S);
Status CreateGraph(ALGraph *G){
ArcNode *p,*q;
VNode v1,v2;
int i,j,sign1,sign2;
(*G).kind = DG;
printf("有向图\n");
printf("请输入顶点数,弧的数\n");
scanf("%d%d",&(*G).vexnum,&(*G).arcnum);
printf("请初始化顶点\n");
for(i = 0; i < (*G).vexnum; ++i){
scanf("%d",&(*G).vertices[i].data);
(*G).vertices[i].firstarc = NULL;
}
printf("请初始化弧\n");
printf("输入格式:顶点1 顶点2 (表示顶点1邻接到顶点2)\n\n");
for(i = 0; i < (*G).arcnum; ++i){
sign1 = -1;
sign2 = -1;
scanf("%d%d",&v1.data,&v2.data);
for(j = 0; j < (*G).vexnum; ++j){
if(v1.data == (*G).vertices[j].data)
sign1 = j;
if(v2.data == (*G).vertices[j].data)
sign2 = j;
}
p = (ArcNode*)malloc(sizeof(ArcNode));
if(!p)
exit(OVERFLOW);
p->next = NULL;
p->adjvex = sign2;
q = (*G).vertices[sign1].firstarc;
if(!q)
(*G).vertices[sign1].firstarc = p;
else{
while(q->next != NULL)
q = q->next;
q->next = p;
}
}
return OK;
}
Status Find(ALGraph G,int *indegree){ //查找函数,将图G各顶点的入度保存到indegree数组中
int i;
ArcNode *p;
for(i = 0; i < G.vexnum; ++i)
indegree[i] = 0;
for(i = 0; i < G.vexnum; ++i){
for(p = G.vertices[i].firstarc; p != NULL; p = p->next){
indegree[p->adjvex]++;
}
}
for(i = 0; i < G.vexnum; ++i)
printf("indegree [%d] = %d \n",i,indegree[i]);
return OK;
}
Status TopologicalSort(ALGraph G){ //拓扑排序
int i,x,k,count = 0;
SqStack S;
int indegree[G.vexnum];
ArcNode *p;
InitStack(&S);
Find(G,indegree);
for(i = 0; i < G.vexnum; ++i){
if(indegree[i] == 0){
Push(&S,i);
}
}
while(!StackEmpty(S)){
Pop(&S,&x);
printf("%d ", x);
count++;
for(p = G.vertices[x].firstarc; p != NULL; p = p->next){
k = p->adjvex;
if(--indegree[k] == 0){
Push(&S,k);
}
}
}
DestroyStack(&S);
if(count > G.vexnum){
return ERROR;
}
return OK;
}
int main(){
ALGraph G;
CreateGraph(&G);
TopologicalSort(G);
return 0;
}
Status InitStack(SqStack *S){
(*S).base = (SElemType *)malloc(sizeof(SElemType));
if(!(*S).base)
exit(OVERFLOW);
(*S).top = (*S).base;
(*S).stacksize = STACK_INIT_SIZE;
return OK;
}
Status DestroyStack(SqStack *S){
free((*S).base);
(*S).base = (*S).top = NULL;
(*S).stacksize = 0;
return OK;
}
Status Push(SqStack *S, SElemType e){
if((*S).top - (*S).base >= (*S).stacksize){
(*S).base = (SElemType *)realloc((*S).base,(STACKINCREMENT + S->stacksize) * sizeof(SElemType));
if(!S->base)
exit(OVERFLOW);
(*S).top = S->base + S->stacksize;
S->stacksize += STACKINCREMENT;
}
*((*S).top++) = e;
// (*S).top ++;
return OK;
}
Status Pop(SqStack *S, SElemType *e){
if(S->top == S->base){
printf("栈空\n");
return ERROR;
}
*e = *--S->top;
return OK;
}
Status StackEmpty(SqStack S){
if(S.base == S.top)
return TRUE;
else
return FALSE;
}
关键路径
#include
#include
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#define TRUE 1
#define FALSE 0
#define STACK_INIT_SIZE 10
#define STACKINCREMENT 2
#define MAX_VERTEX_SIZE 20
#define INFINITY INT_MAX
typedef int Status;
typedef int InfoType;
typedef int VertexType;
typedef int VRType;
typedef enum {DG,DN,UDG,UDN} GraphKind;
typedef int SElemType;
typedef struct
{
SElemType *base,*top;
int stacksize;
}SqStack;
typedef struct ArcNode
{
VRType adjvex;
int weight;
struct ArcNode *next;
}ArcNode;
typedef struct VNode
{
VertexType data;
ArcNode *firstarc;
}VNode,AdjList[MAX_VERTEX_SIZE];
typedef struct
{
int vexnum,arcnum;
AdjList vertices;
GraphKind kind;
}ALGraph;
int etv[MAX_VERTEX_SIZE];
int ltv[MAX_VERTEX_SIZE];
Status InitStack(SqStack *S);
Status DestroyStack(SqStack *S);
Status Push(SqStack *S, SElemType e);
Status Pop(SqStack *S, SElemType *e);
Status StackEmpty(SqStack S);
Status CreateGraph(ALGraph *G){
ArcNode *p,*q;
VNode v1,v2;
int i,j,sign1,sign2;
int value;
(*G).kind = DG;
printf("有向图\n");
printf("请输入顶点数,弧的数\n");
scanf("%d%d",&(*G).vexnum,&(*G).arcnum);
printf("请初始化顶点\n");
for(i = 0; i < (*G).vexnum; ++i){
scanf("%d",&(*G).vertices[i].data);
(*G).vertices[i].firstarc = NULL;
}
printf("请初始化弧\n");
printf("输入格式:顶点1 顶点2 权值(表示顶点1邻接到顶点2)\n\n");
for(i = 0; i < (*G).arcnum; ++i){
sign1 = -1;
sign2 = -1;
scanf("%d%d%d",&v1.data,&v2.data,&value);
for(j = 0; j < (*G).vexnum; ++j){
if(v1.data == (*G).vertices[j].data)
sign1 = j;
if(v2.data == (*G).vertices[j].data)
sign2 = j;
}
p = (ArcNode*)malloc(sizeof(ArcNode));
if(!p)
exit(OVERFLOW);
p->next = NULL;
p->weight = value;
p->adjvex = sign2;
q = (*G).vertices[sign1].firstarc;
if(!q)
(*G).vertices[sign1].firstarc = p;
else{
while(q->next != NULL)
q = q->next;
q->next = p;
}
}
return OK;
}
Status Find(ALGraph G,int *indegree){ //查找函数,将图G各顶点的入度保存到indegree数组中
int i;
ArcNode *p;
for(i = 0; i < G.vexnum; ++i)
indegree[i] = 0;
for(i = 0; i < G.vexnum; ++i){
for(p = G.vertices[i].firstarc; p != NULL; p = p->next){
indegree[p->adjvex]++;
}
}
for(i = 0; i < G.vexnum; ++i)
printf("indegree [%d] = %d \n",i,indegree[i]);
return OK;
}
Status TopologicalSort(ALGraph G, SqStack *T){ //拓扑排序
int i,x,k,count = 0;
SqStack S;
int indegree[G.vexnum];
ArcNode *p;
InitStack(&S);
InitStack(T);
Find(G,indegree);
for(i = 0; i < G.vexnum; ++i)
etv[i] = 0;
for(i = 0; i < G.vexnum; ++i){
if(indegree[i] == 0){
Push(&S,i);
}
}
while(!StackEmpty(S)){
Pop(&S,&x);
Push(T,x);
count++;
for(p = G.vertices[x].firstarc; p != NULL; p = p->next){
k = p->adjvex;
if(--indegree[k] == 0){
Push(&S,k);
}
if(etv[k] < etv[x] + p->weight)
etv[k] = etv[x] + p->weight;
}
}
DestroyStack(&S);
if(count > G.vexnum){
return ERROR;
}
printf("\n");
return OK;
}
Status CriticalPath(ALGraph G){
int i,k,x;
int ete,lte;
ArcNode *p;
SqStack T;
InitStack(&T);
TopologicalSort(G,&T);
for(i = 0; i < G.vexnum; ++i){
ltv[i] = etv[G.vexnum - 1];
}
while(!StackEmpty(T)){
Pop(&T,&x);
for(p = G.vertices[x].firstarc; p != NULL; p = p->next){
k = p->adjvex;
if(ltv[x] > ltv[k] - p->weight)
ltv[x] = ltv[k] - p->weight;
}
}
for(i = 0; i < G.vexnum; ++i){
for(p = G.vertices[i].firstarc; p != NULL; p = p->next){
k = p->adjvex;
ete = etv[i];
lte = ltv[k] - p->weight;
if(ete == lte){
printf("Criticalpath: <%d,%d> length: %d\n",i,k,p->weight);
}
}
}
DestroyStack(&T);
return OK;
}
int main(){
ALGraph G;
CreateGraph(&G);
CriticalPath(G);
return 0;
}
Status InitStack(SqStack *S)
{ /* 构造一个空栈S */
(*S).base=(SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType));
if(!(*S).base)
exit(OVERFLOW); /* 存储分配失败 */
(*S).top=(*S).base;
(*S).stacksize=STACK_INIT_SIZE;
return OK;
}
Status DestroyStack(SqStack *S)
{ /* 销毁栈S,S不再存在 */
free((*S).base);
(*S).base=NULL;
(*S).top=NULL;
(*S).stacksize=0;
return OK;
}
Status ClearStack(SqStack *S)
{ /* 把S置为空栈 */
(*S).top=(*S).base;
return OK;
}
Status Push(SqStack *S,SElemType e)
{ /* 插入元素e为新的栈顶元素 */
if((*S).top-(*S).base>=(*S).stacksize) /* 栈满,追加存储空间 */
{
(*S).base=(SElemType *)realloc((*S).base,((*S).stacksize+STACKINCREMENT)*sizeof(SElemType));
if(!(*S).base)
exit(OVERFLOW); /* 存储分配失败 */
(*S).top=(*S).base+(*S).stacksize;
(*S).stacksize+=STACKINCREMENT;
}
*((*S).top)++=e;
return OK;
}
Status Pop(SqStack *S,SElemType *e)
{ /* 若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERROR */
if((*S).top==(*S).base)
return ERROR;
*e=*--(*S).top;
return OK;
}
Status StackEmpty(SqStack S)
{ /* 若栈S为空栈,则返回TRUE,否则返回FALSE */
if(S.top==S.base)
return TRUE;
else
return FALSE;
}