查找算法之二分查找

二分查找算法的时间复杂度为o(log2(n))。


#include 

using namespace std;

typedef int ElementType;

int binarySearch_recursive(ElementType a[], ElementType e, int begin, int end)
{
    if(begin > end) return -1;

//    int midIndex = (begin + end) / 2;
//    int midIndex = begin + (end - begin) / 2;
    int midIndex = begin + ((end - begin) >> 1);//recommended


//    if      (e == a[midIndex]) return midIndex;
//    else if (e < a[midIndex])  return binarySearch_recursive(a, e, begin, midIndex-1);
//    else                       return binarySearch_recursive(a, e, midIndex+1, end);

    return midIndex = (e == a[midIndex]) ? midIndex * (a[midIndex] == e) + (a[midIndex] != e)*(-1) :
                      ((e < a[midIndex]) ? binarySearch_recursive(a, e, begin, midIndex - 1) : binarySearch_recursive(a, e, midIndex + 1, end));

}

int binarySearch_nonRecursive(ElementType a[], ElementType e, int num)
{
    int begin = 0, end = num - 1, midIndex;
    while( begin <= end )
    {
        midIndex = begin + ((end - begin) >> 1);

        if(e == a[midIndex])      return midIndex;
        else if(e < a[midIndex])  end = midIndex - 1;
        else                      begin = midIndex + 1;
    }

    return -1;
}

int main(int argc, char *argv[])
{
    int a[] = {1, 3, 4, 5, 7, 9};
    int len = sizeof(a)/sizeof(a[0]);

    cout << binarySearch_recursive(a, 5, 0, len - 1) << endl;
    cout << binarySearch_nonRecursive(a, 5, len) << endl;

    return 0;
}

你可能感兴趣的:(数据结构与算法分析)