tensorflow4:创建一个简单的强化学习游戏

Deep Q Network是DeepMind最早(2013年)提出来的,是深度强化学习方法。最开始AI什么也不会,通过给它提供游戏界面像素和分数,慢慢把它训练成游戏高手。这里首先给出一个基本的游戏例子,然后再给出强化学习方法。
1.基本游戏

#coding=utf-8
import pygame
from pygame.locals import *
import sys
BLACK =(0,0,0)
WHITE = (255,255,255)

SCREEN_SIZE = [320,400]#屏幕大小
BAR_SIZE = [20,5]#挡板大小
BALL_SIZE = [15,15]#球的尺寸

class Game(object):
    def __init__(self):
        pygame.init()
        self.clock = pygame.time.Clock()#定时器
        self.screen = pygame.display.set_mode(SCREEN_SIZE)
        pygame.display.set_caption('Simple Game')

        self.ball_pos_x = SCREEN_SIZE[0]//2 - BALL_SIZE[0]/2
        self.ball_pos_y = SCREEN_SIZE[1]//2 - BALL_SIZE[1]/2
        #ball 移动方向
        self.ball_dir_x = -1 #-1:left 1:right
        self.ball_dir_y = -1# -1:up

        self.ball_pos = pygame.Rect(self.ball_pos_x,self.ball_pos_y,BALL_SIZE[0],BALL_SIZE[1])

        self.score =0
        self.bar_pos_x = SCREEN_SIZE[0]//2 - BAR_SIZE[0]//2
        self.bar_pos = pygame.Rect(self.bar_pos_x,SCREEN_SIZE[1]-BAR_SIZE[1],BAR_SIZE[0],BALL_SIZE[1])

    def bar_move_left(self):#左移
        self.bar_pos_x = self.bar_pos_x - 2

    def bar_move_right(self):
        self.bar_pos_x = self.bar_pos_x + 2

    def run(self):
        pygame.mouse.set_visible(0) #移动鼠标不可见
        bar_move_left =False
        bar_move_right = False
        while True:
            for event in pygame.event.get():
                if event.type == QUIT:
                    pygame.quit()
                    sys.exit()#接收到退出事件后退出程序

                elif event.type == pygame.MOUSEBUTTONDOWN and event.button ==1:#鼠标左键按下
                    bar_move_left = True
                elif event.type == pygame.MOUSEBUTTONUP and event.button == 1: #左键弹起
                    bar_move_left = False
                elif event.type == pygame.MOUSEBUTTONDOWN and event.button == 3:#右键
                    bar_move_right = True
                elif event.type == pygame.MOUSEBUTTONUP and event.button == 3:  # 左键弹起
                    bar_move_right = False

            if bar_move_left == True and bar_move_right ==False:
                self.bar_move_left()
            if bar_move_left == False and bar_move_right == True:
                self.bar_move_right()

            self.screen.fill(BLACK)
            self.bar_pos.left = self.bar_pos_x
            pygame.draw.rect(self.screen, WHITE, self.bar_pos)

            self.bar_pos.left += self.ball_dir_x * 2
            self.ball_pos.bottom += self.ball_dir_y * 3
            pygame.draw.rect(self.screen, WHITE, self.ball_pos)

            if self.ball_pos.top <= 0 or self.ball_pos.bottom >= (SCREEN_SIZE[1]- BAR_SIZE[1] + 1):
                self.ball_dir_y =self.ball_dir_y * -1
            if self.ball_pos.left <=0 or self.ball_pos.right >= (SCREEN_SIZE[0]):
                self.ball_dir_x = self.ball_dir_x * -1

            if self.bar_pos.top <= self.ball_pos.bottom and (
                    self.bar_pos.left < self.ball_pos.right and self.bar_pos.right > self.ball_pos.left):
                self.score += 1
                print("Score: ", self.score, end='\r')
            elif self.bar_pos.top <= self.ball_pos.bottom and (
                    self.bar_pos.left > self.ball_pos.right or self.bar_pos.right < self.ball_pos.left):
                print("Game Over: ", self.score)
                return self.score

            pygame.display.update()#更新软件界面显示
            self.clock.tick(60)
game = Game()
game.run()#启动

运行结果:
tensorflow4:创建一个简单的强化学习游戏_第1张图片

2.强化学习代码:

#coding=utf-8
import pygame
import random
from pygame.locals import *
import numpy as np
from collections import deque
import tensorflow as tf
import cv2

BLACK= (0,0,0)
WHITE = (255, 255, 255)
SCREEN_SIZE = [320, 400]
BAR_SIZE = [50, 5]
BALL_SIZE = [15, 15]

# 神经网络的输出
MOVE_STAY = [1, 0, 0]
MOVE_LEFT = [0, 1, 0]
MOVE_RIGHT = [0, 0, 1]

class Game(object):
    def __init__(self):
        pygame.init()
        self.clock = pygame.time.Clock()
        self.screen = pygame.display.set_mode(SCREEN_SIZE)
        pygame.display.set_caption('Simple Game')

        self.ball_pos_x = SCREEN_SIZE[0] // 2 - BALL_SIZE[0] / 2
        self.ball_pos_y = SCREEN_SIZE[1] // 2 - BALL_SIZE[1] / 2

        self.ball_dir_x = -1  # -1 = left 1 = right  
        self.ball_dir_y = -1  # -1 = up   1 = down
        self.ball_pos = pygame.Rect(self.ball_pos_x, self.ball_pos_y, BALL_SIZE[0], BALL_SIZE[1])

        self.bar_pos_x = SCREEN_SIZE[0] // 2 - BAR_SIZE[0] // 2
        self.bar_pos = pygame.Rect(self.bar_pos_x, SCREEN_SIZE[1] - BAR_SIZE[1], BAR_SIZE[0], BAR_SIZE[1])

# action是MOVE_STAY、MOVE_LEFT、MOVE_RIGHT
# ai控制棒子左右移动;返回游戏界面像素数和对应的奖励。(像素->奖励->强化棒子往奖励高的方向移动)
    def step(self, action):
        if action == MOVE_LEFT:
            self.bar_pos_x = self.bar_pos_x - 2
        elif action == MOVE_RIGHT:
            self.bar_pos_x = self.bar_pos_x + 2
        else:
            pass
        if self.bar_pos_x < 0:
            self.bar_pos_x = 0
        if self.bar_pos_x > SCREEN_SIZE[0] - BAR_SIZE[0]:
            self.bar_pos_x = SCREEN_SIZE[0] - BAR_SIZE[0]

        self.screen.fill(BLACK)
        self.bar_pos.left = self.bar_pos_x
        pygame.draw.rect(self.screen, WHITE, self.bar_pos)

        self.ball_pos.left += self.ball_dir_x * 2
        self.ball_pos.bottom += self.ball_dir_y * 3
        pygame.draw.rect(self.screen, WHITE, self.ball_pos)

        if self.ball_pos.top <= 0 or self.ball_pos.bottom >= (SCREEN_SIZE[1] - BAR_SIZE[1] + 1):
            self.ball_dir_y = self.ball_dir_y * -1
        if self.ball_pos.left <= 0 or self.ball_pos.right >= (SCREEN_SIZE[0]):
            self.ball_dir_x = self.ball_dir_x * -1

        reward = 0
        if self.bar_pos.top <= self.ball_pos.bottom and (
                self.bar_pos.left < self.ball_pos.right and self.bar_pos.right > self.ball_pos.left):
            reward = 1  # 击中奖励
        elif self.bar_pos.top <= self.ball_pos.bottom and (
            self.bar_pos.left > self.ball_pos.right or self.bar_pos.right < self.ball_pos.left):
            reward = -1# 没击中惩罚

            # 获得游戏界面像素
        screen_image = pygame.surfarray.array3d(pygame.display.get_surface())
        pygame.display.update()
            # 返回游戏界面像素和对应的奖励
        return reward, screen_image

# learning_rate
LEARNING_RATE = 0.99
# 更新梯度
INITIAL_EPSILON = 1.0
FINAL_EPSILON = 0.05
# 测试观测次数
EXPLORE = 500000
OBSERVE = 50000
# 存储过往经验大小
REPLAY_MEMORY = 500000

BATCH = 100

output = 3 # 输出层神经元数。代表3种操作-MOVE_STAY:[1, 0, 0]  MOVE_LEFT:[0, 1, 0]  MOVE_RIGHT:[0, 0, 1]
input_image = tf.placeholder("float", [None, 80, 100, 4]) # 游戏像素
action = tf.placeholder("float", [None, output])  # 操作

# 定义CNN-卷积神经网络 参考:http://blog.topspeedsnail.com/archives/10451
def convolutional_neural_network(input_image):
    weights = {'w_conv1': tf.Variable(tf.zeros([8, 8, 4, 32])),
     'w_conv2':tf.Variable(tf.zeros([4, 4, 32, 64])),
    'w_conv3':tf.Variable(tf.zeros([3, 3, 64, 64])),
    'w_fc4':tf.Variable(tf.zeros([3456, 784])),
    'w_out':tf.Variable(tf.zeros([784, output]))}

    biases = {'b_conv1': tf.Variable(tf.zeros([32])),
   'b_conv2':tf.Variable(tf.zeros([64])),
    'b_conv3':tf.Variable(tf.zeros([64])),
    'b_fc4':tf.Variable(tf.zeros([784])),
    'b_out':tf.Variable(tf.zeros([output]))}

    conv1 = tf.nn.relu(
        tf.nn.conv2d(input_image, weights['w_conv1'], strides=[1, 4, 4, 1], padding="VALID") + biases['b_conv1'])
    conv2 = tf.nn.relu(
        tf.nn.conv2d(conv1, weights['w_conv2'], strides=[1, 2, 2, 1], padding="VALID") + biases['b_conv2'])
    conv3 = tf.nn.relu(
        tf.nn.conv2d(conv2, weights['w_conv3'], strides=[1, 1, 1, 1], padding="VALID") + biases['b_conv3'])
    conv3_flat = tf.reshape(conv3, [-1, 3456])
    fc4 = tf.nn.relu(tf.matmul(conv3_flat, weights['w_fc4']) + biases['b_fc4'])


    output_layer = tf.matmul(fc4, weights['w_out']) + biases['b_out']
    return output_layer

    # 深度强化学习入门: https://www.nervanasys.com/demystifying-deep-reinforcement-learning/
    # 训练神经网络
def train_neural_network(input_image):
    predict_action = convolutional_neural_network(input_image)
    argmax = tf.placeholder("float", [None, output])
    gt = tf.placeholder("float", [None])
    action = tf.reduce_sum(tf.mul(predict_action, argmax), reduction_indices=1)
    cost = tf.reduce_mean(tf.square(action - gt))
    optimizer = tf.train.AdamOptimizer(1e-6).minimize(cost)
    game = Game()
    D = deque()
    _, image = game.step(MOVE_STAY)
    # 转换为灰度值
    image = cv2.cvtColor(cv2.resize(image, (100, 80)), cv2.COLOR_BGR2GRAY)
    # 转换为二值
    ret, image = cv2.threshold(image, 1, 255, cv2.THRESH_BINARY)
    input_image_data = np.stack((image, image, image, image), axis=2)

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        saver = tf.train.Saver()

        n = 0
        epsilon = INITIAL_EPSILON
        while True:
            action_t = predict_action.eval(feed_dict={input_image: [input_image_data]})[0]
            argmax_t = np.zeros([output], dtype=np.int)
            if (random.random() <= INITIAL_EPSILON):
                maxIndex = random.randrange(output)
            else:
                maxIndex = np.argmax(action_t)
            argmax_t[maxIndex] = 1
            if epsilon > FINAL_EPSILON:
                epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / EXPLORE

            # for event in pygame.event.get():  macOS需要事件循环,否则白屏
            #   if event.type == QUIT:
            #       pygame.quit()
            #       sys.exit()
            reward, image = game.step(list(argmax_t))

            image = cv2.cvtColor(cv2.resize(image, (100, 80)), cv2.COLOR_BGR2GRAY)
            ret, image = cv2.threshold(image, 1, 255, cv2.THRESH_BINARY)
            image = np.reshape(image, (80, 100, 1))
            input_image_data1 = np.append(image, input_image_data[:, :, 0:3], axis=2)

            D.append((input_image_data, argmax_t, reward, input_image_data1))

            if len(D) > REPLAY_MEMORY:
                D.popleft()

            if n > OBSERVE:
                minibatch = random.sample(D, BATCH)
                input_image_data_batch = [d[0] for d in minibatch]
                argmax_batch = [d[1] for d in minibatch]
                reward_batch = [d[2] for d in minibatch]
                input_image_data1_batch = [d[3] for d in minibatch]

                gt_batch = []

                out_batch = predict_action.eval(feed_dict={input_image: input_image_data1_batch})

                for i in range(0, len(minibatch)):
                    gt_batch.append(reward_batch[i] + LEARNING_RATE * np.max(out_batch[i]))

                optimizer.run(feed_dict={gt: gt_batch, argmax: argmax_batch, input_image: input_image_data_batch})

            input_image_data = input_image_data1
            n = n + 1

            if n % 10000 == 0:
                saver.save(sess, './game.cpk', global_step=n)# 保存模型

            print(n, "epsilon:", epsilon, " ", "action:", maxIndex, " ", "reward:", reward)


train_neural_network(input_image)

运行结果图:
tensorflow4:创建一个简单的强化学习游戏_第2张图片
刚开始什么都不会,后来慢慢就比较强悍了!如果想使用该模型需要重新加载,而且最好在GPU上运行,不然真心比较蛋疼。

附上:python-opencv安装
由于没有安装opencv导致import cv2报错。
需要在这个网站Python Extension Packages里面下相关的whl文件。

由于我的电脑是64位的,我之前安装过python3.5,所以我就选择了opencv_python-3.2.0+contrib-cp35-cp35m-win_amd64.whl这个文件。下载后,cmd 安装:

pip install opencv_python-3.2.0+contrib-cp35-cp35m-win_amd64.whl

搞定,完成!

你可能感兴趣的:(tensorflow学习笔记)