The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1
For each case, if the solution exists, output in the format:
N = n[1]^P + ... n[K]^P
where n[i]
(i
= 1, ..., K
) is the i
-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122+42+22+22+12, or 112+62+22+22+22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1,a2,⋯,aK } is said to be larger than { b1,b2,⋯,bK } if there exists 1≤L≤K such that ai=bi for i
If there is no solution, simple output Impossible
.
169 5 2
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
169 167 3
Impossible
解题思路:
1.先把可能组成N的所有数的平方和保存到一个数组中
2.利用DFS遍历数组,对于每个数,有选与不选两种情况
选(可重复):继续重复选取该数,直到不可选取为止
不选:继续遍历下一个数
#include
#include
#include
using namespace std;
int N, K, P, maxFacSum = -1;
const int MAXN = 100;
int FAC[MAXN];
int cindex = 0;
vector temp, ans;
int mpow(int number, int p) {
int ans = 1;
for (int i = 1; i <= p; ++i) {
ans *= number;
}
return ans;
}
void initFac() {
int ntemp = 0;
while (ntemp <= N) {
FAC[cindex] = mpow(cindex + 1, P);
ntemp = FAC[cindex];
cindex++;
}
}
void FDFS(int index, int numK, int sum, int facSum) {
if (sum == N && numK == K) {
if (facSum > maxFacSum) {
ans = temp; //更新ans
maxFacSum = facSum;
}
return;
}
if (numK > K || sum > N) {
return; //边界条件
}
if (index >= 0) {
temp.push_back(index + 1);
FDFS(index, numK + 1, sum + FAC[index], facSum + index); //选
temp.pop_back();
FDFS(index - 1, numK, sum, facSum); //不选
}
}
int main() {
scanf("%d %d %d", &N, &K, &P);
initFac();
FDFS(cindex - 1, 0, 0, 0);
if (maxFacSum == -1) {
printf("Impossible\n");
}
else {
printf("%d = %d^%d", N, ans[0], P);
for (int i = 1; i < ans.size(); ++i) {
printf(" + %d^%d", ans[i], P);
}
}
return 0;
}