数据结构(链表、链栈、链队列、二叉树、图)

本文用于总结数据结构(链表、链栈、链队列、二叉树、图)的创建方式与遍历方式!!!

本目录代码已上传至github中!!!

数据结构(链表、链栈、链队列、二叉树、图)_第1张图片

1. 链表

1. 线性表顺序存储和链式存储的优缺点?
顺序存储:
a.不需要增加额外的存储空间,快速存取指向位置的元素;
b.在插入和删除过程中,需要移动大量元素;
c.需要预先分配存储空间;
链式存储:
a.插入删除操作时间为O(1);
b.用任意位置的存储单元存储元素;

#include 
using namespace std;
typedef struct Node
{
	int data;
	Node *next;
}Node;
//头插法创建链表
void head_insert_create_list(Node *L, int n)
{
	//创建节点
	for (int i = 0; i < n; i++)
	{
		Node *new_node = new Node;
		new_node->data = i;
		new_node->next = L->next;
		L->next = new_node;
	}
}
//尾插法创建链表
void tail_insert_create_list(Node *L, int n)
{
	//初始化尾部节点为头节点
	Node *r = L;
	for (int i = 0; i < n; i++)
	{
		Node *new_node = new Node;
		new_node->data = i;
		r->next = new_node;
		//更新尾节点为新节点
		r = new_node;
	}
	//尾节点的指针域为空
	r->next = NULL;
}
//在第i个位置后插入节点
void insert_node(Node *L, int i, int num)
{
	Node *node = L->next;
	int j = 1;
	//找到第i个节点
	while (node&&j < i)
	{
		node = node->next;
		++j;
	}
	//鲁棒性设计
	if (!node || j > i)
		return;
	Node *new_node = new Node;
	new_node->data = num;
	new_node->next = node->next;
	node->next = new_node;
}
//在第i个位置删除节点
void delete_node(Node *L, int i)
{
	Node *node = L->next;
	int j = 1;
	//找到第i个节点的上一个节点
	while (node&&j < i-1)
	{
		node = node->next;
		++j;
	}
	//鲁棒性设计
	if (!node->next || j > i)
		return;
	Node *delete_node = node->next;
	node->next = delete_node->next;
	free(delete_node);
}
//遍历链表
void print_list(Node *L)
{
	//第一个节点
	Node *node = L->next;
	while (node)
	{
		cout << node->data << " ";
		node = node->next;
	}
	cout << endl;
}
void main()
{
	//创建头节点
	Node *L = new Node;
	L->data = 5;//链表长度
	L->next = NULL;

	//head_insert_create_list(L, L->data);
	//print_list(L);

	tail_insert_create_list(L, L->data);
	print_list(L);

	insert_node(L, 2, 6);
	print_list(L);

	delete_node(L, 3);
	print_list(L);
}

2. 链栈

栈是后进先出的线性表,其仅可以在表尾进行删除和插入操作。

#include 
using namespace std;
typedef struct Node // 定义链栈节点
{
	int data;
	Node *next;
}Node;
typedef struct Stack 
{
	Node *top;  // 定义链栈栈顶节点
	int count;
}Stack;
//创建链栈
void create_stack(Stack *S, int n)
{
	Node *node = S->top;
	for (int i = 0; i < n; i++)
	{
		Node *new_node = new Node;
		new_node->data = i;
		new_node->next = S->top;
		S->top = new_node;
	}
}
//插入栈节点
void insert_node(Stack *S, int data)
{
	Node *new_node = new Node;
	new_node->data = data;
	new_node->next = S->top;
	S->top = new_node;
	S->count++;
}
//删除栈节点
void pop_node(Stack *S)
{
	//鲁棒设计
	if (S->top == NULL)
		return;
	Node *top_node;
	top_node = S->top;
	S->top = top_node->next;
	cout << "删除节点值是: " << top_node->data << endl;
	free(top_node);
}
//打印栈节点
void print_stack(Stack *S)
{
	Node *node = S->top;
	cout << "打印栈节点:";
	while (node)
	{
		cout << node->data << " ";
		node = node->next;
	}
}
void main()
{
	//创建空栈
	Stack *S = new Stack;
	S->top = NULL;
	S->count = 0;

	create_stack(S, 5);
	print_stack(S);

	insert_node(S, 5);
	print_stack(S);

	pop_node(S);
}

3. 链队列

队列是先进先出的线性表,其在队尾进行插入操作,在队首进行删除操作。                                                                                               

#include 
using namespace std;
typedef struct Node //定义队列节点
{
	int data;
	Node *next;
}Node;
typedef struct Queue // 定义链队列的首尾指针,其指向的是首尾节点
{
	Node *front;
	Node *rear;
}Queue;
//创建队列
void create_queue(Queue *Q, int n)
{
	for (int i = 0; i < n; i++)
	{
		Node *new_node = new Node;
		new_node->data = i;
		new_node->next = NULL;
		Q->rear->next = new_node;//队尾插入节点
		Q->rear = new_node;
	}
}
//队尾插入节点
void insert_node(Queue *Q, int num)
{
	Node *new_node = new Node;
	new_node->data = num;
	new_node->next = NULL;
	Q->rear->next = new_node;
	Q->rear = new_node;
}
//队首删除节点
void delete_node(Queue *Q)
{
	//鲁棒性设计
	if (Q->front == Q->rear)
		return;
	Node *delete_node;
	//获得第一个节点
	delete_node = Q->front->next;
	Q->front->next = delete_node->next;
	cout << "删除节点的值:" << delete_node->data << endl;
	free(delete_node);
}
void main()
{
	//创建空队列 队首队尾指针指向头节点
	Queue *Q = new Queue;
	Node *head_node = new Node;
	head_node->next = NULL;
	head_node->data = 5;
	Q->front = head_node;
	Q->rear = head_node;
	
	create_queue(Q, 5);
	delete_node(Q);
	delete_node(Q);


	insert_node(Q, 3);
	delete_node(Q);
}

4. 二叉树

1. 二叉树顺序存储和链式存储的对比
二叉树的顺序存储是节点的下标对应数组的索引下标来存储的。对于深度树来说,若其节点数不多时,
由于需要以完全二叉树的规模进行存储,此时会造成内存空间的浪费。
二叉树的链式存储是为每个节点设置数据域和两个指针域,若节点的左右子树不存在时,此时指针域
为空,即没有内存的分配,其具有线性表链式存储的特点。
2. 二叉树的创建
递归以前序遍历的方式创建节点,指定左右子节点为空时的输入值。
3. 二叉树的遍历
递归打印节点的值,打印的位置不同,遍历的方式也就不同。

#include 
#include 
using namespace std;
typedef struct Node
{
	int data;
	Node *lchild;
	Node *rchild;
}Node;
//创建二叉树
Node * create_binary_tree(int depth, string pos)
{
	cout << "the depth is : " << depth << "  the pos is : " << pos << endl;
	int data;
	cin >> data;
	if (data == 0)
		return NULL;
	Node * new_node = new Node;
	new_node->data = data;
	new_node->lchild = create_binary_tree(depth + 1, "lchild");
	new_node->rchild = create_binary_tree(depth + 1, "rchild");
	return new_node;
}
//前序遍历二叉树
void pre_order_print(Node *root)
{
	if (root == NULL)
		return;
	cout << "the data is : " << root->data << " ";
	pre_order_print(root->lchild);
	pre_order_print(root->rchild);
}
//中序遍历二叉树
void mid_order_print(Node *root)
{
	if (root == NULL)
		return;
	mid_order_print(root->lchild);
	cout << "the data is : " << root->data << " ";
	mid_order_print(root->rchild);
}
//后序遍历二叉树
void last_order_print(Node *root)
{
	if (root == NULL)
		return;
	last_order_print(root->lchild);
	last_order_print(root->rchild);
	cout << "the data is : " << root->data << " ";
}
void main()
{
	Node * root = new Node;
	root = create_binary_tree(1, "root");
	pre_order_print(root);
	cout << endl;
}

5. 图

1. 图的邻接矩阵存储和邻接表存储
和线性表问题一样,链式存储比顺序存储更节约内存。
2. 邻接表存储
图的顶点用数组存储(顶点域和指针域),邻接点用链表存储(顶点域、权重域、指针域)
3. 深度优先遍历
类似于树的前序遍历,从指定顶点开始,从其边表顶点开始遍历递归,并设置已访问顶点的标志位,直至所有顶点都被访问到。
4. 广度优先遍历
类似于树的层序遍历(遍历邻接表的每行),从指定顶点表顶点开始,遍历每个顶点表顶点指向的边表顶点,
将访问过的顶点表顶点出队列,将未被访问过的顶点压入队列

#include 
#include 
using namespace std;
const int Maxsize = 10;
bool visited[Maxsize];
typedef struct EdgeNode//边表顶点
{
	int data;
	int weight;
	EdgeNode *next;
}EdgeNode;
typedef struct VertexNode//顶点表顶点
{
	int data;
	EdgeNode *next;
}VertexNode,VertexList[Maxsize];
typedef struct Graph//无向图
{
	VertexList vertex_list;
	int vertex_num;//顶点数量
	int edge_num;//边数量
}Graph;
//打印边表顶点信息
void print_edge_node(EdgeNode *node)
{
	cout << "the data of edge node: ";
	while (node)
	{
		cout << node->data << " ";
		node = node->next;
	}
	cout << endl;
}
//创建无向图的邻接表
void create_graph(Graph *G)
{	
	cout << "the number of vertex node and edge : ";
	cin >> G->vertex_num >> G->edge_num;
	cout << G->vertex_num << " " << G->edge_num << endl;
	//创建顶点表
	for (int i = 0; i < G->vertex_num; i++)
	{
		G->vertex_list[i].data = i;
		G->vertex_list[i].next = NULL;
	}
	//创建边表 假设无向图有5个顶点,则完全无向图有10条边
	for (int j = 0; j < G->edge_num; j++)
	{
		int a, b;
		cout << "from the vertex a to vertex b: ";
		cin >> a >> b;
		EdgeNode * e_node = new EdgeNode;
		e_node->data = b;//邻接顶点是b
		e_node->next = G->vertex_list[a].next;//头插法
		G->vertex_list[a].next = e_node;

		EdgeNode * e_node_ = new EdgeNode;
		e_node_->data = a;//邻接顶点是a
		e_node_->next = G->vertex_list[b].next;//头插法
		G->vertex_list[b].next = e_node_;
	}
}
//深度优先遍历  指定遍历起始点
void depth_first_search_core(Graph *G, int i)
{
	visited[i] = true;
	cout << G->vertex_list[i].data << " ";
	EdgeNode *node;
	node = G->vertex_list[i].next;
	while (node)
	{
		//如果边表顶点未被访问过,则递归此顶点对应边表顶点
		if (!visited[node->data])
			depth_first_search_core(G, node->data);
		//递归返回后,继续遍历边表顶点
		node = node->next;
	}
}
void depth_first_search(Graph *G)
{
	//初始化访问标志位
	for (int i = 0; i < G->vertex_num; i++)
		visited[i] = false;
	cout << "the result of depth first search is ";
	depth_first_search_core(G, 0);
	cout << endl;
}
//广度优先遍历
void bread_first_search_core(Graph *G, int i)
{
	queue Q;
	EdgeNode *e_node;

	if (!visited[i])
	{
		visited[i] = true;
		cout << G->vertex_list[i].data << " ";
		//起始顶点入队列
		Q.push(i);
		while (!Q.empty())
		{
			//更新边表顶点
			i = Q.front();
			//顶点表顶点出队列
			Q.pop();
			e_node = G->vertex_list[i].next;
			while (e_node)
			{
				if (!visited[e_node->data])
				{
					visited[e_node->data] = true;
					cout << G->vertex_list[e_node->data].data << " ";
					//边表顶点入队列
					Q.push(e_node->data);
				}
				e_node = e_node->next;
			}
		}
	}
}
void bread_first_search(Graph *G)
{
	//初始化访问标志位
	for (int i = 0; i < G->vertex_num; i++)
		visited[i] = false;
	cout << "the result of bread first search is ";
	bread_first_search_core(G, 0);
	cout << endl;
}
void main()
{
	Graph graph = { NULL, 0, 0 };
	Graph *G = &graph;
	create_graph(G);
	for (int i = 0; i < G->vertex_num; i++)
	{
		EdgeNode *node = G->vertex_list[i].next;
		print_edge_node(node);
	}
	depth_first_search(G);
	bread_first_search(G);
}

参考资料:

1.《大话数据结构》

 

你可能感兴趣的:(数据结构)