在leetcode上刷第一道题:twosum
Given an array of integers, return indices of the two numbers such that they add up to a specific target.
You may assume that each input would have exactly one solution, and you may not use the same element twice.
Example:
Given nums = [2, 7, 11, 15], target = 9, Because nums[0] + nums[1] = 2 + 7 = 9, return [0, 1].
两种解法皆为摘抄:
1. 循环遍历,时间复杂度为O(n2)
public static int[] twoSum(int[] numbers, int target) {
int[] ret = new int[2]; //目标输出俩值
for (int i = 0; i < numbers.length; i++) {
for (int j = i + 1; j < numbers.length; j++) {
if (numbers[i] + numbers[j] == target) {
ret[0] = i + 1;
ret[1] = j + 1; //返回的值是第几个,而位置却是0,1
}
}
}
return ret;
}
https://blog.csdn.net/peterkang202/article/details/45064245
2. 引入hashmap,将时间复杂度降低到O(N);
public class Solution {
public int[] twoSum(int[] numbers, int target) {
HashMap map = new HashMap();
int[] result = new int[2];
for (int i = 0; i < numbers.length; i++) {
if (map.containsKey(numbers[i])) { //如果此映射包含指定键的映射关系,则返回此值。
int index = map.get(numbers[i]);
result[0] = index+1 ;
result[1] = i+1;
break;
} else {
map.put(target - numbers[i], i);
}
}
return result;
}
}
3. 最喜欢第三种,当然也是最精简的一种 。同样是用HashMap函数,感觉这个就更顺畅一些。
https://leetcode.com/problems/two-sum/discuss/3/Accepted-Java-O(n)-Solution
public int[] twoSum(int[] nums, int target) {
Map map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
map.put(nums[i], i);
}
for (int i = 0; i < nums.length; i++) {
int complement = target - nums[i];
if (map.containsKey(complement) && map.get(complement) != i) {
return new int[] { i, map.get(complement) };
}
}
throw new IllegalArgumentException("No two sum solution");
}t;
}
*扩展——Hashmap函数
摘自https://www.cnblogs.com/chenssy/p/3521565.html
HashMap也是我们使用非常多的Collection,它是基于哈希表的 Map 接口的实现,以key-value的形式存在。在HashMap中,key-value总是会当做一个整体来处理,系统会根据hash算法来来计算key-value的存储位置,我们总是可以通过key快速地存、取value。下面就来分析HashMap的存取。
HashMap实现了Map接口,继承AbstractMap。其中Map接口定义了键映射到值的规则(Map接口中键和值一一映射. 可以通过键来获取值http://www.runoob.com/java/java-map-interface.html),而AbstractMap类提供 Map 接口的骨干实现,以最大限度地减少实现此接口所需的工作,其实AbstractMap类已经实现了Map,这里标注Map LZ觉得应该是更加清晰吧!
public class HashMapextends AbstractMap implements Map , Cloneable, Serializable
HashMap提供了三个构造函数:
HashMap():构造一个具有默认初始容量 (16) 和默认加载因子 (0.75) 的空 HashMap。
HashMap(int initialCapacity):构造一个带指定初始容量和默认加载因子 (0.75) 的空 HashMap。
HashMap(int initialCapacity, float loadFactor):构造一个带指定初始容量和加载因子的空 HashMap。
在这里提到了两个参数:初始容量,加载因子。这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中桶的数量,初始容量是创建哈希表时的容量,加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,它衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。系统默认负载因子为0.75,一般情况下我们是无需修改的。
HashMap是一种支持快速存取的数据结构,要了解它的性能必须要了解它的数据结构。
我们知道在Java中最常用的两种结构是数组和模拟指针(引用),几乎所有的数据结构都可以利用这两种来组合实现,HashMap也是如此。实际上HashMap是一个“链表散列”,如下是它数据结构:
从上图我们可以看出HashMap底层实现还是数组,只是数组的每一项都是一条链。其中参数initialCapacity就代表了该数组的长度。下面为HashMap构造函数的源码:
//初始容量不能<0 if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); //初始容量不能 > 最大容量值,HashMap的最大容量值为2^30 if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; //负载因子不能 < 0 if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); // 计算出大于 initialCapacity 的最小的 2 的 n 次方值。 int capacity = 1; while (capacity < initialCapacity) capacity <<= 1; //这个方法很厉害啊 this.loadFactor = loadFactor; //设置HashMap的容量极限,当HashMap的容量达到该极限时就会进行扩容操作 threshold = (int) (capacity * loadFactor); //初始化table数组 table = new Entry[capacity]; init(); }
从源码中可以看出,每次新建一个HashMap时,都会初始化一个table数组。table数组的元素为Entry节点。
final K key; V value; Entrynext; final int hash; /** * Creates new entry. */ Entry(int h, K k, V v, Entry n) { value = v; next = n; key = k; hash = h; } ....... }
其中Entry为HashMap的内部类,它包含了键key、值value、下一个节点next,以及hash值,这是非常重要的,正是由于Entry才构成了table数组的项为链表。
上面简单分析了HashMap的数据结构,下面将探讨HashMap是如何实现快速存取的。
首先我们先看源码
//当key为null,调用putForNullKey方法,保存null与table第一个位置中,这是HashMap允许为null的原因 if (key == null) return putForNullKey(value); //计算key的hash值 int hash = hash(key.hashCode()); ------(1) //计算key hash 值在 table 数组中的位置 int i = indexFor(hash, table.length); ------(2) //从i出开始迭代 e,找到 key 保存的位置 for (Entrye = table[i]; e != null; e = e.next) { Object k; //判断该条链上是否有hash值相同的(key相同) //若存在相同,则直接覆盖value,返回旧value if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; //旧值 = 新值 e.value = value; e.recordAccess(this); return oldValue; //返回旧值 } } //修改次数增加1 modCount++; //将key、value添加至i位置处 addEntry(hash, key, value, i); return null; }