约瑟夫问题是一个出现在计算机科学和数学中的问题。在计算机编程的算法中,类似问题又称为约瑟夫环。
据说著名犹太历史学家 Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。然而Josephus 和他的朋友并不想自杀。为避免与其他39个决定自杀的犹太人发生冲突,Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。
17世纪的法国数学家加斯帕在《数目的游戏问题》中讲了这样一个故事:15个教徒和15 个非教徒在深海上遇险,必须将一半的人投入海中,其余的人才能幸免于难,于是想了一个办法:30个人围成一圆圈,从第一个人开始依次报数,每数到第九个人就将他扔入大海,如此循环进行,直到仅余15个人为止。问怎样的排法,才能使每次投入大海的都是非教徒。
【例1】约瑟夫问题。
N个人围成一圈,从某个人开始,按顺时针方向从1开始依次编号。从编号为1的人开始顺时针“1,2,…M”报数,报到M的人退出圈子。这样不断循环下去,圈子里的人将不断减少。由于人的个数是有限的,因此最终会剩下一个人,该人就是优胜者。输入N和M,输出出圈顺序。
例如,N=6、M=5,出圈的顺序是:5,4,6,2,3,1。
(1)编程思路。
为输出出圈顺序,采用一个数组来进行模拟。
定义int circle[N+1],并按circle[i]=i+1的方式赋予各元素初值。该值代表两个含义:1)值为0,代表编号i+1的人不再圈中;2)值非0,代表圈中第i个位置的人编号为i+1。
定义变量i代表报数位置的流动,i的初值为0,代表编号为1的人的位置,i的变化方式为:
i=(i+1)%(n),即0-->1-->2……->n-1 ->0-->1……。
i流动到了位置i后,该位置的人若已出圈(circle[i]==0),显然无法报数,得跳过该位置;若该位置的人在圈中,则报数(定义一个表示报数的变量p,初值为0,每次报数p++)。
当报数到m(即p==m)时,位置i的人出圈,记录出圈人数cnt++,同时p置为0。当出圈人数等于N时循环结束。
(2)源程序。
#include
int main()
{
int n,m,i,p,cnt;
int circle[50];
while (scanf("%d%d",&n,&m) && n!=0)
{
for (i=0;i
i=0; // 报数指示
p=0; // 报数计数器
cnt=0; // 出队人数
while (cnt
if (circle[i]!=0) p++;
if (p==m)
{
printf("%d ",circle[i]);
cnt++;
circle[i]=0;
p=0;
}
i=(i+1)%(n);
}
printf("\n");
}
return 0;
}
下面我们从例1的基础上进行扩展讨论。
例如,运行例1的程序时,输入41 3,则输出为:
3 6 9 12 15 18 21 24 27 30 33 36 39 1 5 10 14 19 23 28 32 37
41 7 13 20 26 34 40 8 17 29 38 11 25 2 22 4 35 16 31
为这个输出结果进行的模拟是需要耗时的。实际上,在大多数问题中,我们不关心中间的结果,只关心某个最终结果。例如,在Josephus 的故事中,Josephus 和他的朋友不想自杀,Josephus 需要关心的是最后一个和倒数第2个出圈的编号是多少,至于中间过程(39个犹太人谁先自杀,谁后自杀)对Josephus 来说无意义。因此,Josephus 需要的是快速确定最后一个和倒数第2个出圈的编号,然后站到对应位置即可。而无需耗时模拟整个过程。
【例2】猴子选大王。
一堆猴子都有编号,编号是1,2,3 ...m,这群猴子(m个)按照1~m的顺序围坐一圈,从第1开始数,每数到第N个,该猴子就要离开此圈,这样依次下来,直到圈中只剩下最后一只猴子,则该猴子为大王。已知猴子数m和报数间隔n(设1<=n<=m<=50),问编号为多少的猴子当大王?
(1)编程思路1。
将例1的源程序略作修改,增加一个变量last记录最后获胜者编号,不输出中间过程。显然,
if (cnt==n) last=circle[i];
(2)源程序1。
#include
int main()
{
int n,m,i,p,cnt,last;
int circle[50];
while (scanf("%d%d",&n,&m) && n!=0)
{
for (i=0;i
i=0; // 报数指示
p=0; // 报数计数器
cnt=0; // 出队人数
while (cnt
if (circle[i]!=0) p++;
if (p==m)
{
cnt++;
if (cnt==n) last=circle[i];
circle[i]=0;
p=0;
}
i=(i+1)%(n);
}
printf("%d\n",last);
}
return 0;
}
(3)编程思路2。
源程序1中采用数组模拟,由于猴子在圈中还是出圈是通过数组元素circle[i]的值非0还是0来判断,位置并未真正删除,因此当n和m很大时,程序的执行效率很低。例如,仅求最后一个出圈的元素,循环就得执行m*n次(p从1报到m,每次报数流动i得走完整一圈,其中n-1个已出圈,圈中仅一个元素)。
为提高运行效率,可以考虑采用循环链表来进行模拟,这样每次出圈就将链表中的相应元素删除。循环链表只剩最后一个元素时,输出胜者编号。
(4)源程序2。
#include
struct Jose
{
int code; // 编号
Jose *next;
};
int main()
{
Jose *head,*p1,*p2;
int n,m,i,cnt,tmp;
scanf("%d%d",&n,&m);
while (n!=0 && m!=0)
{
head=new Jose;
head->code=1;
p2=head;
for (i=2;i<=n;i++) // 创建循环链表
{
p1=new Jose;
p1->code=i;
p2->next=p1;
p2=p1;
}
p2->next=head;
p1=head;
cnt=n;
while (cnt>1)
{
tmp=m%cnt; // 提高效率之举,当m大于圈中人数时会循环多圈,可以不用
if (tmp==0) tmp=cnt;
i=1;
while (i
i++;
p2=p1;
p1=p1->next;
}
p2->next=p1->next; // 报m的结点出圈
delete p1; // 释放出圈结点的空间
cnt--;
p1=p2->next;
}
printf("%d\n",p1->code);
delete p1;
scanf("%d%d",&n,&m);
}
return 0;
}
(5)编程思路3。
本例中的源程序2相比源程序1可以提高运行效率,但毕竟也是采用过程模拟,因此对于n和m较大的情况,效率仍然不高。有没有可以根据n和m的值直接推出最后出圈人编号的办法呢?
为了讨论方便,先把问题稍微改变一下,并不影响原意。
问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。
我们知道第1个人(编号一定是(m-1)%n)出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
k , k+1 , k+2 ... n-2 , n-1 , 0 , 1 , 2 , ... k-2
并且从k开始报0。
现在我们把他们的编号做一下转换:
k --> 0 k+1 --> 1 k+2 --> 2
... ...
k-3 --> n-3 k-2 --> n-2
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据转换把这个x变回去不刚好就是n个人情况的解吗?
下面我们来推导变回去的公式。
序列1: 1 , 2 , 3 , 4 , …k-1 , k , k+1 ,…, n-2 , n-1 , n
序列2: 1 , 2 , 3 , 4 , … k-1 , k+1 , … , n-2 , n-1 , n
序列3: k+1 , k+2 , k+3 , …, n-2 , n-1 , n , 1 , 2 , 3 ,… , k-2 , k-1
序列4: 1 , 2 , 3 , 4 , … , 5 , 6 , 7 , 8 , …, n-2 , n-1
∵ k=m%n;
∴ x' = x+k = x+ m%n ; 而 x+ m%n 可能大于n
∴ x'= (x+ m%n)%n = (x+m)%n 。
如何知道(n-1)个人报数的问题的解f(n-1)呢? 显然只要知道(n-2)个人的解f(n-2)就行了。(n-2)个人的解呢?当然是先求f(n-3) ---- 这显然就是一个倒推问题!
令 f[i] 表示i个人玩报m退出的约瑟夫环游戏的最后胜利者的编号,则有递推公式:
f[1] = 0 ;
f[i] = (f[i-1]+m)%i; (i>1)
有了这个递推公式,我们就很容易求得n个人报m退出的约瑟夫问题的最后胜利者编号f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1即可。
编写程序时,我们可以采用数组递推以便保存中间结果,也可以不保存中间任何结果采用迭代直接得到最后胜利者编号。
(6)采用迭代方式实现的源程序3。
#include
int main()
{
int n,m,i,s;
scanf("%d%d",&n,&m);
while (n!=0 && m!=0)
{
s=0;
for (i=2;i<=n;i++)
s=(s+m) % i;
printf("%d\n",s+1);
scanf("%d%d",&n,&m);
}
return 0;
}
(7)采用递推方式实现的源程序4。
// 采用打表的方式,先将所有的值求出来保存在二维数组f[51][51]中。
// f[n][m]的值代表n个人报m游戏的最后胜利者编号。
// 则有 f[i][m]=0, (i=1)
// f[i][m]= (f[i-1][m]+m)%i (i>1)
#include
int main()
{
int n,m,i,j,f[51][51];
for (i=1;i<51;i++)
f[1][i]=0;
for (i=1;i<51;i++)
{
for (j=2;j<51;j++)
f[j][i]=(f[j-1][i]+i)%j;
}
scanf("%d%d",&n,&m);
while (n!=0 && m!=0)
{
printf("%d\n",f[n][m]+1);
scanf("%d%d",&n,&m);
}
return 0;
}
【例3】城市断电。
有n(3<=n<150)个城市围成圈,先将第1个城市(编号为1)断电,然后每隔m个城市使一个城市断电,直到剩下最后一个城市不断电。问使2号城市不断电的最小的m是多少?
(1)编程思路。
采用例2的求最后胜利者的方式,对n个城市,从m=1开始搜索,若当前m可使2号城市作为胜利者,则m就是所求,否则m=m+1后,继续搜索。
程序采用打表的方式,先将n=3~149的对应m值求出来并保存到数组ans[150]中。
另外,需要注意的是第1个城市先断电了,2号城市相当第1个城市,也可以把问题看成编号从1~n-1的约瑟夫问题。
(2)源程序。
#include
int main()
{
int ans[150],i,j,m,tmp;
for (i = 3;i<150;i++)
{
m = 1;
while(1)
{
tmp = 1; // 注意第1个城市已经断电,相当从1~n-1个城市
for (j = 2;j < i; j++)
{
tmp = (tmp + m)%j;
if (tmp == 0)
{
tmp = j;
}
}
if (tmp == 1) // 最后胜利者是2号城市
// (编号为1一开始就断电,2号相当圈中第1个城市)
{
ans[i] = m;
break;
}
m++;
}
}
int n;
scanf("%d",&n);
while (n!=0)
{
printf("%d\n",ans[n]);
scanf("%d",&n);
}
return 0;
}
将此源程序提交给POJ 2244 “Eeny Meeny Moo”,可以Accepted。
例2、例3采用约瑟夫递推公式,直接得到的是最后胜利者的编号,中间的出圈顺序就没得到。下面我们进一步讨论一下,能否不用模拟的方式,采用递推公式计算的方法,得到例1所示的出圈顺序呢?
设有n个人(0,...,n-1),报数m出圈,则第 i 轮出圈的人为
f(i)=(f(i-1)+m-1)%(n-i+1) (i>=1), f(0)=0; f(i) 表示当前子序列中要出圈的那个人(当前序列编号为0~(n-i));
例如,设n=6,m=5
f(0)=0;
f(1)=[ f(0)+5-1]%6=4; 子序列(0,1,2,3,4,5)中的4 (也就是实际序列(1,2,3,4,5,6)中的5)
f(2)=[ f(1)+5-1]%5=3; 子序列(0,1,2,3,5)中的3 (也就是实际序列(1,2,3,4,6)中的4)
f(3)=[ f(2)+5-1]%4=3; 子序列(0,1,2,5)中的5 (也就是实际序列(1,2,3,6)中的6)
f(4)=[ f(3)+5-1]%3=1; 子序列(0,1,2)中的1 (也就是实际序列(1,2,3)中的2)
f(5)=[ f(4)+5-1]%2=1; 子序列(0,2)中的1 (也就是实际序列(1,3)中的3)
f(6)=[ f(5)+5-1]%1=0; 子序列(0)中的0 (也就是实际序列(1)中的1)
故得到的出圈顺序为:5,4,6,2,3,1。 结果正确。
按照这样的思路,可以修改例1的源程序为:
#include
int main()
{
int n,m,i,j,cnt,circle[51],f[51];
scanf("%d%d",&n,&m);
while (n!=0 && m!=0)
{
for (i=0;i
f[0]=0;
for (i=1;i<=n;i++)
{
f[i]=(f[i-1]+m-1)%(n-i+1);
}
cnt=n;
for (i=1;i<=n;i++)
{
printf("%d ",circle[f[i]]);
for (j=f[i];j
cnt--;
}
printf("\n");
scanf("%d%d",&n,&m);
}
return 0;
}