Convex functions

1 凸优化

1.1 定义

A function f : R n → R f:R^n \rightarrow R f:RnR is convex if d o m f dom f domf is a convex set and if for all x , y ∈ d o m f x,y \in dom f x,ydomf, and θ \theta θ with 0 ≤ θ ≤ 1 , 0 \le \theta \le 1, 0θ1, we have
f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) . f(\theta x + (1-\theta) y) \le \theta f(x)+(1-\theta)f(y). f(θx+(1θ)y)θf(x)+(1θ)f(y).

1.2 一阶条件

Suppose f f f is differentiable. Then f f f is convex if and only if d o m f dom f domf is convex and
f ( y ) ≥ f ( x ) + ▽ T f ( x ) ( y − x ) f(y) \ge f(x)+\bigtriangledown^Tf(x)(y-x) f(y)f(x)+Tf(x)(yx) holds for all x , y ∈ d o m f x,y \in domf x,ydomf.

1.3 二阶条件

We now assume that f f f is twice differentiable, that is, its Hessian or second order derivative ▽ 2 f \bigtriangledown^2f 2f exists at each point in d o m f dom f domf, which is open. Then f f f is convex if and only if d o m f dom f domf is convex and its Hessian is positive semidefinite: for all x ∈ d o m f x \in dom f xdomf, ▽ 2 f ( x ) ⪰ 0. \bigtriangledown^2f(x) \succeq 0. 2f(x)0.

1.4 eipgraph

The epigraph of a function f : R n → R f:R^n \rightarrow R f:RnR is defined as e p i f = { ( x , t ) ∣ x ∈ d o m f , f ( x ) ≤ t } . epi f= \{(x,t) \vert x \in dom f, f(x) \le t\}. epif={(x,t)xdomf,f(x)t}.The link between convex sets and convex functions is via the epigraph: A function is convex if and only if its epigraph is a convex set.

2 Operations that preserve convexity

2.1 Nonnegative weighted sums

f = w 1 f 1 + ⋯ + w m f m f=w_1f_1+\dots+w_mf_m f=w1f1++wmfm

2.2 Composition with an affine mapping

g ( x ) = f ( A x + b ) g(x)=f(Ax+b) g(x)=f(Ax+b)

2.3 Pointwise maximun and supremum

f ( x ) = m a x { f 1 ( x ) , f 2 ( x ) } f(x)=max\{f_1(x),f_2(x)\} f(x)=max{f1(x),f2(x)}

2.4 Composition?

2.5 Minimization?

2.6 Perspective of a function?

3 The conjugate function

Let f : R n → R . f:R^n \rightarrow R. f:RnR. The function f ∗ : R n → R , f^*:R^n \rightarrow R, f:RnR, defined as
f ∗ ( y ) = sup ⁡ x ∈ d o m f ( y T x − f ( x ) ) , f^*(y)=\sup \limits_{x \in dom f }(y^Tx-f(x)), f(y)=xdomfsup(yTxf(x)),
is called the conjugate of the function f f f.

We see immediately that f ∗ f^* f is a convex function, since it is the pointwise supremum of a family of convex (indeed, affine) function of y. This is true whether or not f f f is convex.

你可能感兴趣的:(凸函数,凸优化,数学,凸优化)