- 深度前馈神经网络--Apple的学习笔记
applecai
深度前馈神经网络--Apple的学习笔记主要就是设计数学模型,使得误差预计与实际误差最小,然后使用梯度下降法调整参数。其中多了隐层。神经网络与机器学习的线性回归的主要区别在于基本都是处理非凸优化问题,所以会用神经网络。一般都使用交叉熵求loss,原因是处理接近饱和的梯度比较费时间。反向传播(Backpropagation,缩写为BP)是”误差反向传播”的简称。用到了链式求导法则去更新权重参数。参考
- 【AI】深度学习——前馈神经网络——全连接前馈神经网络
AmosTian
AI#机器学习#深度学习人工智能深度学习神经网络机器学习多层感知器
文章目录1.1全连接前馈神经网络1.1.1符号说明超参数参数活性值1.1.2信息传播公式通用近似定理1.1.3神经网络与机器学习结合二分类问题多分类问题1.1.4参数学习矩阵求导链式法则更为高效的参数学习反向传播算法目标计算∂z(l)∂wij(l)\frac{\partialz^{(l)}}{\partialw^{(l)}_{ij}}∂wij(l)∂z(l)计算∂z(l)∂b(l)\frac{\p
- 机器学习之对神经网络的基本原理的了解
JNU freshman
机器学习人工智能机器学习神经网络人工智能
文章目录神经网络与机器学习神经网络的结点神经网络与机器学习神经网络代替模型和用学习规则代替机器学习神经网络代替模型:神经网络是一种受到生物神经系统启发的计算模型,它由多个神经元层组成,这些神经元层之间有连接权重,可以通过训练来调整这些权重,以执行特定的任务。神经网络通过前向传播和反向传播来学习从输入到输出的映射关系,通常在监督学习任务中使用。这种方法通常涉及大量的数据和计算资源,并且在各种领域中都
- 神经网络与机器学习
Curry_Math
神经网络与深度学习机器学习神经网络人工智能
《神经网络与深度学习》第一章绪论1.1人工智能知识结构预备知识顶会论文常用的深度学习框架研究领域1.2如何开发AIS芒果机器学习1.3表示学习局部表示和分布式表示1.4深度学习(DeepLearning)1.5人脑神经网络人工神经网络神经网络发展史第一章绪论1.1人工智能人工智能的一个子领域神经网络:一种以(人工)神经元为基本单元的模型深度学习:一种机器学习问题,主要解决贡献度分配问题知识结构知识
- 《神经网络与机器学习》笔记(七)
糖醋排骨盐酥鸡
第九章无监督学习典型的无监督学习问题可以分为以下几类:无监督特征学习是从无标签的训练数据中挖掘有效的特征或表示。无监督特征学习一般用来进行降维、数据可视化或监督学习前期的数据预处理。特征学习也包含很多的监督学习算法,比如线性判别分析等。概率密度估计简称密度估计,是根据一组训练样本来估计样本空间的概率密度。密度估计可以分为参数密度估计和非参数密度估计。参数密度估计是假设数据服从某个已知概率密度函数形
- 《神经网络与机器学习》笔记(四)
糖醋排骨盐酥鸡
第六章循环神经网络循环神经网络(RecurrentNeuralNetwork,RNN)是一类具有短期记忆能力的神经网络。循环神经网络的参数学习可以通过随时间反向传播算法来学习。随时间反向传播算法即按照时间的逆序将错误信息一步步地往前传递。当输入序列比较长时,会存在梯度爆炸和消失问题,也称为长程依赖问题。为了解决这个问题,人们对循环神经网络进行了很多的改进,其中最有效的改进方式引入门控机制。循环神经
- 神经网络与机器学习,tensorflow,part5(简单卷积网络实现mnist手写数字识别__准确率达0.99
miaozasnone
#载入MNIST数据集,创建默认的InteractiveSession。fromtensorflow.examples.tutorials.mnistimportinput_dataimporttensorflowastfmnist=input_data.read_data_sets("MNIST_data/",one_hot=True)sess=tf.InteractiveSession()#定
- 《神经网络与机器学习》笔记(一)
糖醋排骨盐酥鸡
《神经网络与深度学习》笔记本书组织架构入门篇第一章绪论特征表示方法局部特征含义:也称为离散表示或符号表示,通常是用one-hot向量的形式优点:这种离散的表示方式具有很好的解释性因为向量稀疏,所以用于线性模型时计算效率非常高缺点:one-hot向量维数太高,不能扩展(因为维数是由词表大小决定的)不同向量之间的相似度为0,无法进行相似度计算分布式表示含义:也称为*分散式表示,如NLP中的词嵌入,是用
- 书单
isolate_watcher
读书笔记
书名C++PrimerPlusC++PrimerPlusC++PrimerPlusC++Primer第五版编译原理计算机组成与设计:硬件/软件接口TCP/IP详解卷1神经网络与机器学习深入理解计算机系统(原书第2版)C语言程序设计:现代方法(第2版)设计模式可复用面向对象软件的基础计算机程序的构造和解析(原书第2版)C++程序设计语言算法导论UNIX环境高级编程(第3版)UNIX网络编程卷1:套接
- 《神经网络与机器学习》笔记(五)
糖醋排骨盐酥鸡
第七章网络优化与正则化虽然神经网络具有非常强的表达能力,但是当应用神经网络模型到机器学习时依然存在一些难点问题。主要分为两大类:(1)优化问题:神经网络模型是一个非凸函数,再加上在深度网络中的梯度消失问题,很难进行优化;另外,深度神经网络模型一般参数比较多,训练数据也比较大,会导致训练的效率比较低。(2)泛化问题:因为神经网络的拟合能力强,反而容易在训练集上产生过拟合。因此在训练深度神经网络时,同
- 《神经网络与机器学习》笔记(三)
糖醋排骨盐酥鸡
第五章卷积神经网络卷积神经网络(ConvolutionalNeuralNetwork,CNN或ConvNet)是一种具有局部连接、权重共享等特性的深层前馈神经网络。卷积神经网络最早是主要用来处理图像信息。在用全连接前馈网络来处理图像时,会存在两个问题:(1)参数太多;(2)全连接前馈网络无法直接提取(可通过数据增强实现)图片的局部不变性特征。目前的卷积神经网络一般是由卷积层、汇聚层和全连接层交叉堆
- 神经网络与机器学习,tensorflow,part2(python实现感知机)
miaozasnone
以下是python利用numpy库和matplotlib库进行感知机的实现以及可视化其中有两个输入,共七组数据importnumpyasnpimportmatplotlib.pyplotaspltimporttimep_x=np.array([[5,5],[4,5],[5,4],[4,4],[2,3],[0.25,0.25],[1,1]])y=np.array([1,1,1,1,-1,-1,-1]
- 《神经网络与机器学习》学习日记 1
杜杜整日都在撕大帝
《神经网络与机器学习》学习日记1第一章绪论1.MachineLearning(机器学习ML)1.1MLmodel2.表示学习2.1定义2.2目的2.3关键2.4两个核心问题2.5好的表示2.6特征表示的两种方式3.DeepLearning(深度学习DL)3.1定义3.2目的3.3深度3.4关键问题4.神经网络(这里指人工神经网络)定义第一章绪论(引用部分大部分是自己看书写下的笔记,敲上以方便后续理
- 神经网络与机器学习 笔记—单神经元解决XOR问题
TK13
神经网络与机器学习机器学习AI神经网络XOR问题COVER定理
单神经元解决XOR问题有两个输入的单个神经元的使用得到的决策边界是输入空间的一条直线。在这条直线的一边的所有的点,神经元输出1;而在这条直线的另一边的点,神经元输出0。在输入空间中,这条直线的位置和方向有两个输入节点相连的神经元的突触权值和它的偏置决定。由于输入模式(0,0)和(1,1)是位于单位正方形相对的两个角,输入模式(0,1)和(1,0)也一样,很明显不能做出这样一条直线作为决策边界可以使
- 神经网络与机器学习 笔记—反向传播算法(BP)
TK13
神经网络与机器学习神经网络与机器学习反向传播算法AIBP算法13
先看下面信号流图,L=2和M0=M1=M2=M3=3的情况,上面是前向通过,下面部分是反向通过。1.初始化。假设没有先验知识可用,可以以一个一致分布来随机的挑选突触权值和阈值,这个分布选择为均值等于0的均匀分布,它的方差选择应该使得神经元的诱导局部域的标准偏差位于sigmoid激活函数的线行部分与饱和部分过渡处。(1)训练样本的呈现。呈现训练样本的一个回合给网络。对训练集中以某种形式排序的每个样本
- 神经网络与机器学习 - 第0章 导言
博_采_众_长
机器学习神经网络人工智能
文章目录0.1什么是神经网络神经网络的优点0.2人类大脑0.3神经元模型激活函数的类型神经元的统计模型0.4被看作有向图的神经网络0.5反馈0.6网络结构单层前馈网络多层前馈网络递归网络0.7知识表示知识表示的规则怎样在神经网络设计中加入先验信息如何在网络设计中建立不变性一些最终评论0.8学习过程有教师学习(监督学习)无教师学习强化学习无监督学习0.9学习任务模式联想模式识别函数逼近控制波束形成0
- 西瓜书第五章神经网络笔记
LeaveElan
神经网络机器学习人工智能
神经网络根据是T.Kohonen1988年在urNetworks创刊给出的定义,神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能模拟生物神经系统对真是世界物体所作出的交互反应。一个经典问题是神经网络与机器学习的区别在于什么?具体可参考这篇博客下面我给出结论:机器学习是计算机程序基于给定的有限的数据,选定某个学习目标,建立模型学习,并通过优化算法优化参数,直到满足指标要求的整个过
- 笔记:神经网络与深度学习—绪论
zhenpigmilk
机器学习
笔记:神经网络与深度学习绪论绪论一、关于本课程1.知识结构2.推荐教材3.推荐课程二、常用的深度学习框架绪论最近开始学习机器学习,从B站找到了一篇网课:复旦大学——邱锡鹏的《神经网络与机器学习》,因此写了几篇课程笔记,以便日后学习。课程链接课本以及课程PPT下载一、关于本课程人工智能的一个子领域。神经网络:一种以(人工)神经元为基本单元的模型深度学习:一类机器学习问题,主要解决贡献度分配问题这门课
- 神经网络与机器学习 pdf 全文内容详细分享
MAIN198
算法排序算法数据结构
神经网络与机器学习https://pan.baidu.com/s/1qs9wAX-lYBwwE_bO4nhiNg?pwd=5py4神经网络是计算智能和机器学习的重要分支,在诸多领域都取得了很大的成功。在众多神经网络著作中,影响较为广泛的是SimonHaykin的《神经网络原理》(第3版更名为《神经网络与机器学习》)。在本书中,作者结合近年来神经网络和机器学习的新进展,从理论和实际应用出发,全面、系
- 神经网络学习(一)-- 框架建立
尾生爱柱子
小白之路神经网络学习python
神经网络学习(一)--框架建立文章目录神经网络学习(一)--框架建立前言一、神经网络的定义神经网络的优点:二、使用步骤1.引入库2.读入数据总结前言这里只记录一些基本概念,并保存系列文章的导航栏最近工作中开始需要神经网络,之前遇到神经网络类问题一直都采取视而不见的态度,现在躲不过去了,遂开始学习。资料来源是SimonHaykin著《神经网络与机器学习》(第三版)和《神经网络与深度学习》(邱锡鹏著)
- 神经网络与深度学习(二) pytorch入门——张量
红肚兜
本文章参考飞桨AIStudio——人工智能学习实训社区神经网络与机器学习:案例与实践教程进行学习目录一、概念:张量算子二.、使用pytorch实现张量运算1.2.1创建张量1.2.1.1指定数据创建张量1.2.1.2指定形状创建1.2.1.3指定区间创建张量1.2.2张量的属性1.2.2.1张量的形状1.2.2.2形状的改变1.2.2.3张量的数据类型1.2.2.4张量的设备位置1.2.3张量与N
- 正则化最小二乘法——神经网络与机器学习笔记2
Reader2号
machinelearning正则化最小二乘法最小二乘法机器学习线性规划
参考AndrewNg公开课的推导一些公式trA=∑ni=1AiitrAB=trBAtrABC=trCBA=trBCAtrA=trATifa∈R,tra=a∇AtrAB=BT∇AtrABATC=CAB+CTABT∇θJ=⎡⎣⎢⎢⎢⎢⎢⎢⎢∂J∂θ0∂J∂θ1⋮∂J∂θn⎤⎦⎥⎥⎥⎥⎥⎥⎥∇Af(A)=⎡⎣⎢⎢⎢⎢∂f∂A11⋮∂A∂An1⋯⋱⋯∂A∂A1n⋮∂A∂Ann⎤⎦⎥⎥⎥⎥正则化最小二乘法推
- 神经网络与机器学习中双半月环数据集python实现
蜗牛的笨笨
人工智能与机器学习pythonnumpy机器学习神经网络人工智能
文章目录两个半月环的数据集为什么要写这个?数据集的构成两个半月环的数据集为什么要写这个?还能问什么啊???肯定是老师要求的啊啊啊啊啊啊。但是从本质上来说,还是学习,学习都是自己的,应该是自发的、自主的,通过自己一步一步的做了,去学习了才能真正收获到东西,学习目的.学习的目的是掌握知识,为自己的将来打好基础,作好铺垫。.学习仅仅是一个提高自己过程。.正如人们常说的"学以致用",学习就是为了将来的发展
- Michael Nielsen的神经网络与深度学习入门教程
笑横野
神经网络程序人生
MichaelNielsen的神经网络与深度学习入门教程作者:MichaelNielsen这是我个人以为目前最好的神经网络与机器学习入门资料。作者以MNIST为例详细介绍了神经网络中的基本概念,比如梯度下降优化方法,反向传播算法(backpropagationalgorithm),以及各种神经网络训练过程中的小技巧,比如初始权重的选择方法,梯度下降方法的进一步改进,选取不同的代价函数,如何防止过拟
- 神经网络与机器学习 笔记—Rosenblatt感知机
TK13
神经网络与机器学习
Rosenblatt感知机器感知器在神经网络发展的历史上占据着特殊位置:它是第一个从算法上完整描述的神经网络。它的发明者Rosenblatt是一位心里学家,在20世纪60年代和70年代,感知器的启发,工程师、物理学家以及数学家们纷纷投身于神经网络各个不同方面的研究。值得一提的是,尽管在58年Rosenblatt关于感知器的论文就发表了,感知器在今天依然是有效的。Rosenblatt感知器建立在一个
- 记一下机器学习笔记 支持向量机
Sibada_scut
这里是《神经网络与机器学习》以及一些《统计学习方法》的笔记。(主要是《神机》坑爹没给SMO或者其他求解算法)大概知道为啥《神机》这本讲神经网络的书会把SVM放进去了,从结构上看,SVM跟感知机,使用了核方法的SVM跟单隐藏层的神经网络确实非常相似,而当年Vapnic正式提出SVM的论文题目就叫“支持向量网络”。(虽然主要是因为当时神经网络正火而被要求整这名的)支持向量机(SupportVector
- 记一下机器学习笔记 多层感知机的反向传播算法
Sibada_scut
《神经网络与机器学习》第4章前半段笔记以及其他地方看到的东西的混杂…第2、3章的内容比较古老预算先跳过。不得不说幸亏反向传播的部分是《神机》里边人话比较多的部分,看的时候没有消化不良。多层感知机书里前三章的模型的局限都很明显,对于非线性可分问题苦手,甚至简单的异或都弄不了。于是多层感知机(也就是传说中的神经网络)就被发明了出来对付这个问题。多层感知机就是由一系列的感知机,或者说神经元组成,每个神经
- 记一下机器学习笔记 Rosenblatt感知机
Sibada_scut
一入ML深似海啊…这里主要是《神经网络与机器学习》(NeuralNetworksandLearningMachines,以下简称《神机》)的笔记,以及一些周志华的《机器学习》的内容,可能夹杂有自己的吐槽,以及自己用R语言随便撸的实现。话说这个《神经网络与机器学习》还真是奇书,不知是作者风格还是翻译问题,一眼望去看不到几句人话(也许是水利狗看不懂),感觉我就是纯买来自虐的。作为开始当然是最古老的机器
- 记一下机器学习笔记 最小均方(LMS)算法
Sibada_scut
这里是《神经网络与机器学习》第三章的笔记…最小均方算法,即Least-Mean-Square,LMS。其提出受到感知机的启发,用的跟感知机一样的线性组合器。在意义上一方面LMS曾被用在了滤波器上,另一方面对于LMS的各种最优化方式为反向传播算法提供了思想基础。于是这章书主要是简单介绍LMS算法的原理,并介绍几个简单的最优化方法,然后用物理热力学原理描述LMS算法的学习过程(这个部分太过高深只好跳过
- 神经网络与机器学习 第一讲(1)——为什么需要机器学习
weixin_30642869
一、什么是机器学习?1.有些问题很难用写程序去解决,比如对象识别:1)我们不知道人脑是怎么识别对象的,也就没法写程序2)即使我们有很好的想法,还是发现很难写2.很难计算一个信用卡交易行为是不是异常的:1)找不到简单的规则,可能需要结合巨大数量的规则2)作弊的手段是随时间变化的,我们的程序需要不断更新二、机器学习方法1.收集输入输出对2.机器学习算法能够利用这些输入输出对,完成任务1)需要很多样例2
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin