【ECCV 2016】SiamFC 细节笔记

对SiameseFC中的一些细节做个记录

Training

对y的GT标记为 y ∈ { + 1 , − 1 } y\in\{+1,-1\} y{+1,1},有logistic loss
ℓ ( y , v ) = log ⁡ ( 1 + exp ⁡ ( − y v ) ) \ell(y, v)=\log (1+\exp (-y v)) (y,v)=log(1+exp(yv))
其中,v由模板分支和候选分支的到的分数值。
Score map的损失定义为:
L ( y , v ) = 1 ∣ D ∣ ∑ u ∈ D ℓ ( y [ u ] , v [ u ] ) L(y, v)=\frac{1}{|\mathcal{D}|} \sum_{u \in \mathcal{D}} \ell(y[u], v[u]) L(y,v)=D1uD(y[u],v[u])
在对于每个position有lable y的情况下,随机梯度下降SGD求解卷积网络参数 θ \theta θ
arg ⁡ min ⁡ θ E ( z , x , y ) L ( y , f ( z , x ; θ ) ) \arg \min _{\theta} \underset{(z, x, y)}{\mathbb{E}} L(y, f(z, x ; \theta)) argθmin(z,x,y)EL(y,f(z,x;θ))
【ECCV 2016】SiamFC 细节笔记_第1张图片

  • 提取的图片以目标为中心,缺失部分用RGB均值填充。

  • 训练输入的两帧最多相隔T帧。

在图片宽高比不变的情况下,以图片中心为半径的R区域内都被认为是正例。
y [ u ] = { + 1  if  k ∥ u − c ∥ ≤ R − 1  otherwise  y[u]=\left\{\begin{array}{ll}{+1} & {\text { if } k\|u-c\| \leq R} \\ {-1} & {\text { otherwise }}\end{array}\right. y[u]={+11 if kucR otherwise 

  • 以target为中心的目标训练被认为更有效
实际操作
数据集管理

【ECCV 2016】SiamFC 细节笔记_第2张图片
数据集的操作顺序大概是

1. Signup (VID)
2. Download and unzip the full original ImageNet Video dataset (the 86 GB archive).
3. 移动验证集
4. Run `./video_ids.sh /path/to/original/ILSVRC2015` to generate `vid_id_frames.txt`.
5. Run `per_frame_annotation.m` for all 5 folders.标记frame
6. Run `parse_objects.m` for all 5 folders.标记objects
7. Run `vid_setup_data.m` to generate your own `imdb_video.mat`. 
8. Add a field `.set` which is 1 for ILSVRC15-VID training videos (folders `a`, `b`, `c` and `d`)and 2 for ILSVRC15-VID validation videos (folder `e`) (to not be confused with the validation videos used during tracking evaluation, which instead come from VOT and TempleColor). For ECCV'16 SiamFC the training/validation split was decided only inside `experiment.m` code.
9. Duplicate the tree structure of the ILSVRC15 folder (without copying the data!)
10. Run `save_crops.m` to generate crops for all the videos indexed by `imdb_video.mat` and save them on disk.
11. Run `vid_image_stats.m` and save the output in a `.mat` file. It will be used for data augmentation during training. 

你可能感兴趣的:(目标跟踪)