本文主要参考博客https://blog.csdn.net/luoyexuge/article/details/80399265 [1]
bazel安装参考:https://blog.csdn.net/luoyi131420/article/details/78585989 [2]
首先介绍下自己的环境是centos7,tensorflow版本是1.7,python是3.6(anaconda3)。
要调用tensorflow c++接口,首先要编译tensorflow,要装bazel,要装protobuf,要装Eigen;然后是用python训练模型并保存,最后才是调用训练好的模型,整体过程还是比较麻烦,下面按步骤一步步说明。
1.安装bazel
以下是引用的[2]
首先安装bazel依赖的环境:
sudo add-apt-repository ppa:webupd8team/java
sudo apt-get install openjdk-8-jdk openjdk-8-source
sudo apt-get install pkg-config zip g++ zlib1g-dev unzip
注意:如果你没有安装add-apt-repository命令,需要执行sudo apt-get install software-properties-common命令。
实际上我自己只缺jdk工具,加上我没有sudo权限,我自己是在网上直接下的jdk-8,链接是
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-javase8-2177648.html
然后解压,最后将其路径添加到环境变量中:
export JAVA_HOME=/home/guozitao001/tools/jdk1.8.0_171
export PATH=$JAVA_HOME/bin:$PATH
然后去git上下载bazel的安装文件https://github.com/bazelbuild/bazel/releases,具体是文件bazel-0.15.0-installer-linux-x86_64.sh。
(1) 终端切换到.sh文件存放的路径,文件添加可执行权限:
$ chmod +x bazel-0.5.3-installer-linux-x86_64.sh
(2)然后执行该文件:
$ ./bazel-0.5.3-installer-linux-x86_64.sh –user
注意:–user选项表示bazel安装到HOME/bin目录下,并设置.bazelrc的路径为HOME/.bazelrc。
安装完成后执行bazel看是否安装成功,这里我并没有添加环境变量就可以直接运行,大家根据自己需要添加。
2.安装protobuf
下载地址:https://github.com/google/protobuf/releases ,我下载的是3.5.1版本,如果你是下载新版的tensorflow,请确保protobuf版本也是最新的,安装步骤:
cd /protobuf
./configure
make
sudo make install
安装之后查看protobuf版本:
protoc --version
根据[1]的作者采坑经历所说,protoc一定要注意版本要和tensorflow匹配,总之这里3.5.1的protoc和tensorflow1.7是能够匹配的。
3.安装Eigen
wget http://bitbucket.org/eigen/eigen/get/3.3.4.tar.bz2
下载之后解压放在重新命名为eigen3,我存放的路径是,/Users/zhoumeixu/Downloads/eigen3
这个没什么好多说的,如果wget失败就直接用浏览器或者迅雷下载就是了。
4.tensorflow下载以及编译:
1下载TensorFlow ,使用 git clone - –recursive https://github.com/tensorflow/tensorflow
2.下载bazel工具(mac下载installer-darwin、linux用installer-linux)
3. 进入tensorflow的根目录
3.1 执行./configure 根据提示配置一下环境变量,这个不大重要。
要GPU的话要下载nvidia驱动的 尽量装最新版的驱动吧 还有cudnn version为5以上的 这些在官网都有提及的
3.2 有显卡的执行 ” bazel build –config=opt –config=cuda //tensorflow:libtensorflow_cc.so ”
没显卡的 ” –config=cuda ” 就不要加了
bazel build –config=opt //tensorflow:libtensorflow_cc.so。
编译成功后会有bazel成功的提示。
3.3这里编译完过后,最后调用tensorflow模型的时候的时候提示文件tensorflow/tensorflow/core/platform/default/mutex.h缺2个头文件:nsync_cv.h,nsync_mu.h,仔细查找后,发现这两个头文件在python的site-papackages里面,它只是没找到而已,所以我们在mutex.h中将这两个头文件的路径补充完整:
这样之后调用就不会提示缺少头文件了。
4.python训练tensorflow模型:
下面训练tensorflow模型的pb模型,[1]作者做了个简单的线性回归模型及生成pb格式模型代码:
# coding:utf-8
# python 3.6
import tensorflow as tf
import numpy as np
import os
tf.app.flags.DEFINE_integer('training_iteration', 1000,
'number of training iterations.')
tf.app.flags.DEFINE_integer('model_version', 1, 'version number of the model.')
tf.app.flags.DEFINE_string('work_dir', 'model/', 'Working directory.')
FLAGS = tf.app.flags.FLAGS
sess = tf.InteractiveSession()
x = tf.placeholder('float', shape=[None, 5],name="inputs")
y_ = tf.placeholder('float', shape=[None, 1])
w = tf.get_variable('w', shape=[5, 1], initializer=tf.truncated_normal_initializer)
b = tf.get_variable('b', shape=[1], initializer=tf.zeros_initializer)
sess.run(tf.global_variables_initializer())
y = tf.add(tf.matmul(x, w) , b,name="outputs")
ms_loss = tf.reduce_mean((y - y_) ** 2)
train_step = tf.train.GradientDescentOptimizer(0.005).minimize(ms_loss)
train_x = np.random.randn(1000, 5)
# let the model learn the equation of y = x1 * 1 + x2 * 2 + x3 * 3
train_y = np.sum(train_x * np.array([1, 2, 3,4,5]) + np.random.randn(1000, 5) / 100, axis=1).reshape(-1, 1)
for i in range(FLAGS.training_iteration):
loss, _ = sess.run([ms_loss, train_step], feed_dict={x: train_x, y_: train_y})
if i%100==0:
print("loss is:",loss)
graph = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def,
["inputs", "outputs"])
tf.train.write_graph(graph, ".", FLAGS.work_dir + "liner.pb",
as_text=False)
print('Done exporting!')
注意这里一定要把需要输入和输出的变量要以string形式的name在tf.graph_util.convert_variables_to_constants中进行保存,比如说这里的inputs和outputs。得到一个后缀为pb的文件
然后加载该模型,验证是否成功保存模型:
import tensorflow as tf
import numpy as np
logdir = '/Users/zhoumeixu/Documents/python/credit-nlp-ner/model/'
output_graph_path = logdir+'liner.pb'
with tf.Graph().as_default():
output_graph_def = tf.GraphDef()
with open(output_graph_path, "rb") as f:
output_graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(output_graph_def,name="")
with tf.Session() as sess:
input = sess.graph.get_tensor_by_name("inputs:0")
output = sess.graph.get_tensor_by_name("outputs:0")
result = sess.run(output, feed_dict={input: np.reshape([1.0,1.0,1.0,1.0,1.0],[-1,5])})
print(result)
运行结果:[[14.998546]], 该结果完全符合预期。
model_loader_base.h:
#ifndef CPPTENSORFLOW_MODEL_LOADER_BASE_H
#define CPPTENSORFLOW_MODEL_LOADER_BASE_H
#include
#include
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/platform/env.h"
using namespace tensorflow;
namespace tf_model {
/**
* Base Class for feature adapter, common interface convert input format to tensors
* */
class FeatureAdapterBase{
public:
FeatureAdapterBase() {};
virtual ~FeatureAdapterBase() {};
virtual void assign(std::string, std::vector<double>*) = 0; // tensor_name, tensor_double_vector
std::vector<std::pair<std::string, tensorflow::Tensor> > input;
};
class ModelLoaderBase {
public:
ModelLoaderBase() {};
virtual ~ModelLoaderBase() {};
virtual int load(tensorflow::Session*, const std::string) = 0; //pure virutal function load method
virtual int predict(tensorflow::Session*, const FeatureAdapterBase&, const std::string, double*) = 0;
tensorflow::GraphDef graphdef; //Graph Definition for current model
};
}
#endif //CPPTENSORFLOW_MODEL_LOADER_BASE_H
ann_model_loader.h:
#ifndef CPPTENSORFLOW_ANN_MODEL_LOADER_H
#define CPPTENSORFLOW_ANN_MODEL_LOADER_H
#include "model_loader_base.h"
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/platform/env.h"
using namespace tensorflow;
namespace tf_model {
/**
* @brief: Model Loader for Feed Forward Neural Network
* */
class ANNFeatureAdapter: public FeatureAdapterBase {
public:
ANNFeatureAdapter();
~ANNFeatureAdapter();
void assign(std::string tname, std::vector<double>*) override; // (tensor_name, tensor)
};
class ANNModelLoader: public ModelLoaderBase {
public:
ANNModelLoader();
~ANNModelLoader();
int load(tensorflow::Session*, const std::string) override; //Load graph file and new session
int predict(tensorflow::Session*, const FeatureAdapterBase&, const std::string, double*) override;
};
}
#endif //CPPTENSORFLOW_ANN_MODEL_LOADER_H
ann_model_loader.cpp:
#include
#include
#include
#include "ann_model_loader.h"
//#include
using namespace tensorflow;
namespace tf_model {
/**
* ANNFeatureAdapter Implementation
* */
ANNFeatureAdapter::ANNFeatureAdapter() {
}
ANNFeatureAdapter::~ANNFeatureAdapter() {
}
/*
* @brief: Feature Adapter: convert 1-D double vector to Tensor, shape [1, ndim]
* @param: std::string tname, tensor name;
* @parma: std::vector*, input vector;
* */
void ANNFeatureAdapter::assign(std::string tname, std::vector<double>* vec) {
//Convert input 1-D double vector to Tensor
int ndim = vec->size();
if (ndim == 0) {
std::cout << "WARNING: Input Vec size is 0 ..." << std::endl;
return;
}
// Create New tensor and set value
Tensor x(tensorflow::DT_FLOAT, tensorflow::TensorShape({1, ndim})); // New Tensor shape [1, ndim]
auto x_map = x.tensor<float, 2>();
for (int j = 0; j < ndim; j++) {
x_map(0, j) = (*vec)[j];
}
// Append to input
input.push_back(std::pair<std::string, tensorflow::Tensor>(tname, x));
}
/**
* ANN Model Loader Implementation
* */
ANNModelLoader::ANNModelLoader() {
}
ANNModelLoader::~ANNModelLoader() {
}
/**
* @brief: load the graph and add to Session
* @param: Session* session, add the graph to the session
* @param: model_path absolute path to exported protobuf file *.pb
* */
int ANNModelLoader::load(tensorflow::Session* session, const std::string model_path) {
//Read the pb file into the grapgdef member
tensorflow::Status status_load = ReadBinaryProto(Env::Default(), model_path, &graphdef);
if (!status_load.ok()) {
std::cout << "ERROR: Loading model failed..." << model_path << std::endl;
std::cout << status_load.ToString() << "\n";
return -1;
}
// Add the graph to the session
tensorflow::Status status_create = session->Create(graphdef);
if (!status_create.ok()) {
std::cout << "ERROR: Creating graph in session failed..." << status_create.ToString() << std::endl;
return -1;
}
return 0;
}
/**
* @brief: Making new prediction
* @param: Session* session
* @param: FeatureAdapterBase, common interface of input feature
* @param: std::string, output_node, tensorname of output node
* @param: double, prediction values
* */
int ANNModelLoader::predict(tensorflow::Session* session, const FeatureAdapterBase& input_feature,
const std::string output_node, double* prediction) {
// The session will initialize the outputs
std::vector outputs; //shape [batch_size]
// @input: vector >, feed_dict
// @output_node: std::string, name of the output node op, defined in the protobuf file
tensorflow::Status status = session->Run(input_feature.input, {output_node}, {}, &outputs);
if (!status.ok()) {
std::cout << "ERROR: prediction failed..." << status.ToString() << std::endl;
return -1;
}
//Fetch output value
std::cout << "Output tensor size:" << outputs.size() << std::endl;
for (std::size_t i = 0; i < outputs.size(); i++) {
std::cout << outputs[i].DebugString();
}
std::cout << std::endl;
Tensor t = outputs[0]; // Fetch the first tensor
int ndim = t.shape().dims(); // Get the dimension of the tensor
auto tmap = t.tensor<float, 2>(); // Tensor Shape: [batch_size, target_class_num]
int output_dim = t.shape().dim_size(1); // Get the target_class_num from 1st dimension
std::vector<double> tout;
// Argmax: Get Final Prediction Label and Probability
int output_class_id = -1;
double output_prob = 0.0;
for (int j = 0; j < output_dim; j++) {
std::cout << "Class " << j << " prob:" << tmap(0, j) << "," << std::endl;
if (tmap(0, j) >= output_prob) {
output_class_id = j;
output_prob = tmap(0, j);
}
}
// Log
std::cout << "Final class id: " << output_class_id << std::endl;
std::cout << "Final value is: " << output_prob << std::endl;
(*prediction) = output_prob; // Assign the probability to prediction
return 0;
}
}
main.cpp:
#include
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/platform/env.h"
#include "ann_model_loader.h"
using namespace tensorflow;
int main(int argc, char* argv[]) {
if (argc != 2) {
std::cout << "WARNING: Input Args missing" << std::endl;
return 0;
}
std::string model_path = argv[1]; // Model_path *.pb file
// TensorName pre-defined in python file, Need to extract values from tensors
std::string input_tensor_name = "inputs";
std::string output_tensor_name = "outputs";
// Create New Session
Session* session;
Status status = NewSession(SessionOptions(), &session);
if (!status.ok()) {
std::cout << status.ToString() << "\n";
return 0;
}
// Create prediction demo
tf_model::ANNModelLoader model; //Create demo for prediction
if (0 != model.load(session, model_path)) {
std::cout << "Error: Model Loading failed..." << std::endl;
return 0;
}
// Define Input tensor and Feature Adapter
// Demo example: [1.0, 1.0, 1.0, 1.0, 1.0] for Iris Example, including bias
int ndim = 5;
std::vector<double> input;
for (int i = 0; i < ndim; i++) {
input.push_back(1.0);
}
// New Feature Adapter to convert vector to tensors dictionary
tf_model::ANNFeatureAdapter input_feat;
input_feat.assign(input_tensor_name, &input); //Assign vec to tensor
// Make New Prediction
double prediction = 0.0;
if (0 != model.predict(session, input_feat, output_tensor_name, &prediction)) {
std::cout << "WARNING: Prediction failed..." << std::endl;
}
std::cout << "Output Prediction Value:" << prediction << std::endl;
return 0;
}
将这四个文件放在同一个路径下,然后还需要添加一个Cmake的txt文件:
cmake_minimum_required(VERSION 2.8)
project(cpptensorflow)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=gnu++0x -g -fopenmp -fno-strict-aliasing")
link_directories(/home/xxx/tensorflow/bazel-bin/tensorflow)
include_directories(
/home/xxx/tensorflow
/home/xxx/tensorflow/bazel-genfiles
/home/xxx/tensorflow/bazel-bin/tensorflow
/home/xxx/tools/eigen3
)
add_executable(cpptensorflow main.cpp ann_model_loader.h model_loader_base.h ann_model_loader.cpp)
target_link_libraries(cpptensorflow tensorflow_cc tensorflow_framework)
这里注意cmake_minimum_required(VERSION 2.8)要和自己系统的cmake最低版本相符合。
mkdir build
cd build
cmake ..
make
生成cpptensorflow执行文件,后接保存的模型pb文件路径:
./cpptensorflow /Users/zhoumeixu/Documents/python/credit-nlp-ner/model/liner.pb
Final value is: 14.9985
Output Prediction Value:14.9985
到此基本就结束了,最后感谢下作者[1],我真是差点被搞疯了。。。