DataLayer
作为caffe训练时的数据层(以多线程的方式读取数据加速solver
的训练过程),继承自BaseDataLayer/BasePrefetchingDataLayer
。
template
class BaseDataLayer : public Layer {
public:
explicit BaseDataLayer(const LayerParameter& param);
// This method may not be overridden except by the BasePrefetchingDataLayer.
virtual void LayerSetUp(const vector*>& bottom,
const vector*>& top);
// Data layers should be shared by multiple solvers in parallel
virtual inline bool ShareInParallel() const { return true; }
virtual void DataLayerSetUp(const vector*>& bottom,
const vector*>& top) {}
// Data layers have no bottoms, so reshaping is trivial.
virtual void Reshape(....) {//do nothing}
virtual void Backward_cpu(....) {//do nothing}
protected:
TransformationParameter transform_param_;
shared_ptr > data_transformer_;
bool output_labels_;
};
data_transformer_主要是对输入的图片做crop_size,do_mirror,mean等操作.
下面看起函数定义LayerSetUp(参数初始化):
template
void BaseDataLayer::LayerSetUp(const vector*>& bottom,
const vector*>& top) {
if (top.size() == 1) {
output_labels_ = false;
} else {
output_labels_ = true;
}
data_transformer_.reset(
new DataTransformer(transform_param_, this->phase_));
data_transformer_->InitRand();
// The subclasses should setup the size of bottom and top
DataLayerSetUp(bottom, top);
}
BasePrefetchingDataLayer还继承了InternalThread
template
class BasePrefetchingDataLayer :
public BaseDataLayer, public InternalThread {
public:
explicit BasePrefetchingDataLayer(const LayerParameter& param);
void LayerSetUp(const vector*>& bottom,
const vector*>& top);
virtual void Forward_cpu(const vector*>& bottom,
const vector*>& top);
// Prefetches batches
static const int PREFETCH_COUNT = 3;
protected:
virtual void InternalThreadEntry();
virtual void load_batch(Batch* batch) = 0;
Batch prefetch_[PREFETCH_COUNT];
BlockingQueue*> prefetch_free_;
BlockingQueue*> prefetch_full_;
Blob transformed_data_;
};
template
void BasePrefetchingDataLayer::LayerSetUp(
const vector*>& bottom, const vector*>& top) {
BaseDataLayer::LayerSetUp(bottom, top);
//.........
DLOG(INFO) << "Initializing prefetch";
this->data_transformer_->InitRand();
StartInternalThread();
DLOG(INFO) << "Prefetch initialized.";
}
其中load_batch函数被DataLayer重载.
template
void BasePrefetchingDataLayer::InternalThreadEntry() {
while (!must_stop()) {
Batch *batch = prefetch_free_.pop();
load_batch(batch);
prefetch_full_.push(batch);
}
}
DataLayer中使用线程读取Batch(image,label)push到队列中,然后pop出来前向传播:
template
void BasePrefetchingDataLayer::Forward_cpu(
const vector*>& bottom, const vector*>& top) {
Batch* batch = prefetch_full_.pop("Data layer prefetch queue empty");
// Reshape to loaded data.
top[0]->ReshapeLike(batch->data_);
// Copy the data
caffe_copy(batch->data_.count(), batch->data_.cpu_data(),
top[0]->mutable_cpu_data());
if (this->output_labels_) {
// Reshape to loaded labels.
top[1]->ReshapeLike(batch->label_);
// Copy the labels.
caffe_copy(batch->label_.count(), batch->label_.cpu_data(),
top[1]->mutable_cpu_data());
}
prefetch_free_.push(batch);
}
下面看DataLayer:
template
class DataLayer : public BasePrefetchingDataLayer {
public:
explicit DataLayer(const LayerParameter& param);
virtual ~DataLayer();
virtual void DataLayerSetUp(const vector*>& bottom,
const vector*>& top);
// DataLayer uses DataReader instead for sharing for parallelism
virtual inline bool ShareInParallel() const { return false; }
virtual inline const char* type() const { return "Data"; }
virtual inline int ExactNumBottomBlobs() const { return 0; }
virtual inline int MinTopBlobs() const { return 1; }
virtual inline int MaxTopBlobs() const { return 2; }
protected:
virtual void load_batch(Batch* batch);
DataReader reader_;
};
DataLayerSetUp初始化参数:
template
void DataLayer::DataLayerSetUp(const vector*>& bottom,
const vector*>& top) {
const int batch_size = this->layer_param_.data_param().batch_size();
// Read a data point, and use it to initialize the top blob.
Datum& datum = *(reader_.full().peek());
// Use data_transformer to infer the expected blob shape from datum.
vector top_shape = this->data_transformer_->InferBlobShape(datum);
this->transformed_data_.Reshape(top_shape);
// Reshape top[0] and prefetch_data according to the batch_size.
top_shape[0] = batch_size;
top[0]->Reshape(top_shape);
for (int i = 0; i < this->PREFETCH_COUNT; ++i) {
this->prefetch_[i].data_.Reshape(top_shape);
}
if (this->output_labels_) {// label
vector label_shape(1, batch_size);
top[1]->Reshape(label_shape);
for (int i = 0; i < this->PREFETCH_COUNT; ++i) {
this->prefetch_[i].label_.Reshape(label_shape);
}
}
}
load_batch在线程中轮训读取数据库(如lmdb)中的数据,并做crop_size,do_mirror,mean等操作,然后通过Forward_cpu传递给下一层.
template
void DataLayer::load_batch(Batch* batch) {
CPUTimer batch_timer;
batch_timer.Start();
double read_time = 0;nnndouble trans_time = 0;
CPUTimer timer;
const int batch_size = this->layer_param_.data_param().batch_size();
Datum& datum = *(reader_.full().peek());
// Use data_transformer to infer the expected blob shape from datum.
vector top_shape = this->data_transformer_->InferBlobShape(datum);
this->transformed_data_.Reshape(top_shape);
// Reshape batch according to the batch_size.
top_shape[0] = batch_size;
batch->data_.Reshape(top_shape);
Dtype* top_data = batch->data_.mutable_cpu_data();
Dtype* top_label = NULL;
if (this->output_labels_) {
top_label = batch->label_.mutable_cpu_data();
}
for (int item_id = 0; item_id < batch_size; ++item_id) {
timer.Start();
// get a datum
Datum& datum = *(reader_.full().pop("Waiting for data"));
read_time += timer.MicroSeconds();
timer.Start();
// Apply data transformations (mirror, scale, crop...)
int offset = batch->data_.offset(item_id);
this->transformed_data_.set_cpu_data(top_data + offset);
this->data_transformer_->Transform(datum, &(this->transformed_data_));
// Copy label.
if (this->output_labels_) {
top_label[item_id] = datum.label();
}
trans_time += timer.MicroSeconds();
reader_.free().push(const_cast(&datum));
}
timer.Stop();
batch_timer.Stop();
// DLOG(INFO) << "Prefetch batch: " << batch_timer.MilliSeconds() << " ms.";
// DLOG(INFO) << " Read time: " << read_time / 1000 << " ms.";
// DLOG(INFO) << "Transform time: " << trans_time / 1000 << " ms.";
}
使用示例如下:
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "/home/xy/caffe-master/examples/mnist/mnist_train_lmdb"
batch_size: 64
backend: LMDB
}
}
proto定义如下:
message DataParameter {
enum DB {
LEVELDB = 0;
LMDB = 1;
}
// Specify the data source.
optional string source = 1;
// Specify the batch size.
optional uint32 batch_size = 4;
optional uint32 rand_skip = 7 [default = 0];
optional DB backend = 8 [default = LEVELDB];
// Prefetch queue (Number of batches to prefetch to host memory.
optional uint32 prefetch = 10 [default = 4];
}
caffe
系列源码分析介绍本系列深度学习框架caffe
源码分析主要内容如下:
caffe源码分析-cmake 工程构建主要内容:
自己从头构建一遍工程,这样能让我更好的了解大型的项目的构建。当然原始的caffe的构建感觉还是比较复杂(主要是cmake),我这里仅仅使用cmake构建,而且简化点,当然最重要的是支持CLion直接运行调试(如果需要这个工程可以评论留下你的邮箱,我给你发送过去)。
SyncedMemory
, 以及类Blob
数据传输的媒介.主要内容:
caffe源码分析-SyncedMemory
caffe源码分析-Blob
其中Blob
分析给出了其直接与opencv的图片相互转化以及操作,可以使得我们更好的理解Blob
.
layer
的源码分析,包括从整体上说明了layer
类别以及其proto定义与核心函数.内容如下:
caffe源码分析-layer
caffe源码分析-ReLULayer
caffe源码分析-inner_product_layer
caffe源码分析-layer_factory
首先分析了最简单的layer
Relu
,然后在是inner_product_layer全连接层
, 最后是layer_factory
caffe中 以此工厂模式create各种Layer.
内容如下:
caffe源码分析-BlockingQueue
caffe源码分析-InternalThread
caffe源码分析-DataReader
内容如下:
caffe源码分析-DataTransformer
caffe源码分析-db, io
内容如下:
caffe c++示例(mnist 多层感知机c++训练,测试)
类似与caffe
一样按照layer、solver、loss、net
等模块构建的神经网络实现可以见下面这篇blog,相信看懂了这个python的代码理解caffe框架会更简单点.
神经网络python实现
最后如果需要cmake
+ CLion
直接运行调试caffe
的代码工程,可以评论留下你的邮箱,我给你发送过去.