学习信号时域和频域、快速傅立叶变换(FFT)、加窗,以及如何通过这些操作来加深对信号的认识。
傅立叶变换有助于理解常见的信号,以及如何辨别信号中的错误。 尽管傅立叶变换是一个复杂的数学函数,但是通过一个测量信号来理解傅立叶变换的概念并不复杂。 从根本上说,傅立叶变换将一个信号分解为不同幅值和频率的正弦波。 我们继续来分析这句话的意义所在。
所有信号都是若干正弦波的和
我们通常把一个实际信号看作是根据时间变化的电压值。 这是从时域的角度来观察信号。 傅立叶定律指出,任意波形在时域中都可以由若干个正弦波和余弦波的加权和来表示。 例如,有两个正弦波,其中一个的频率是另一个的3倍。 将两个正弦波相加,就得到了一个不同的信号。
假设第二号波形幅值也是第一个波形的1/3。 此时,只有波峰受影响。
即使可以通过这种方法构造信号,那意味着什么呢? 因为可以通过正弦波构造信号,同理也可以将信号分解为正弦波。 一旦信号被分解,可查看和分析原信号中不同频率的信号。 请参考信号分解的下列使用实例:
傅立叶变换将一个时域信号转换为频域信号。 频域信号显示了不同频率对应的电压。 频域是另一种观察信号的角度。
数字化仪对波形进行采样,然后将采样转换为离散的值。 因为发生了转换,傅立叶转换在这些数据上无法进行。 可使用离散傅立叶变换(DFT),其结果是离散形式的频域信号。 FFT是DFT的一种优化实现,计算量较少,但是本质上是对信号的分解。
请查看上图1中的信号。 有两个频率不同的信号。在该情况下,频域中就会显示两条表示不同频率的竖线。
现实生活中,情况是怎样的呢? 许多混合信号示波器(MSO)都有FFT功能。 下图中,你可以观察到混合信号图中,方波FFT是如何显示的。 放大后可观察到频域中的尖峰。
在频域中观察信号有助于验证和发现信号中的问题。 例如,假设有一个输出正弦波的电路。 可在示波器上查看时域输出信号,如图8所示。 看上去没有任何问题!
FFT提供了观察信号的新视角,但是FFT也有各种限制,可通过加窗增加信号的清晰度。
使用FFT分析信号的频率成分时,分析的是有限的数据集合。 FFT认为波形是一组有限数据的集合,一个连续的波形是由若干段小波形组成的。 对于FFT而言,时域和频域都是环形的拓扑结构。时间上,波形的前后两个端点是相连的。 如测量的信号是周期信号,采集时间内刚好有整数个周期,那么FFT的上述假设合理。
在很多情况下,并不能测量到整数个周期。 因此,测量到的信号就会被从周期中间切断,与时间连续的原信号显示出不同的特征。有限数据采样会使测量信号产生剧烈的变化。 这种剧烈的变化称为不连续性。
采集到的周期为非整数时,端点是不连续的。 这些不连续片段在FFT中显示为高频成分。这些高频成分不存在于原信号中。 这些频率可能远高于奈奎斯特频率,在0~ 采样率的一半的频率区间内产生混叠。 使用FFT获得的频率,不是原信号的实际频率,而是一个改变过的频率。 类似于某个频率的能量泄漏至其他频率。 这种现象叫做频谱泄漏。频率泄漏使好的频谱线扩散到更宽的信号范围中。
可通过加窗来尽可能减少在非整数个周期上进行FFT产生的误差。 数字化仪采集到的有限序列的边界会呈现不连续性。加窗可减少这些不连续部分的幅值。 加窗包括将时间记录乘以有限长度的窗,窗的幅值逐渐变小,在边沿处为0。 加窗的结果是尽可能呈现出一个连续的波形,减少剧烈的变化。 这种方法也叫应用一个加窗。
根据信号的不同,可选择不同类型的加窗函数。 要理解窗对信号频率产生怎样的影响,就要先理解窗的频率特性。
窗的波形图显示了窗本身为一个连续的频谱,有一个主瓣,若干旁瓣。 主瓣是时域信号频率成分的中央,旁瓣接近于0。 旁瓣的高度显示了加窗函数对于主瓣周围频率的影响。 对强正弦信号的旁瓣响应可能会超过对较近的弱正弦信号主瓣响应。 一般而言,低旁瓣会减少FFT的泄漏,但是增加主瓣的带宽。 旁瓣的跌落速率是旁瓣峰值的渐进衰减速率。 增加旁瓣的跌落速率,可减少频谱泄漏。
选择加窗函数并非易事。 每一种加窗函数都有其特征和适用范围。 要选择加窗函数,必须先估计信号的频率成分。
即使不使用任何窗,信号也会与高度一致的长方形窗进行卷积运算。本质上相当于对时域输入信号进行截屏,对离散信号也有效。 该卷积有一个正弦波函数特性的频谱。 基于该原因,没有窗叫做统一窗或长方形窗。
Hamming窗和Hanning窗都有正弦波的外形。 两个窗都会产生宽波峰低旁瓣的结果。 Hanning窗在窗口的两端都为0,杜绝了所有不连续性。 Hamming窗的窗口两端不为0,信号中仍然会呈现不连续性。 Hamming窗擅长减少最近的旁瓣,但是不擅长减少其他旁瓣。 Hamming窗和Hanning适用于对频率精度要求较高对旁瓣要求较低的噪声测量。
Blackman-Harris窗类似于Hamming和Hanning窗。 得到的频谱有较宽的波峰,旁瓣有压缩。 该窗主要有两种类型。 4阶Blackman-Harris是一种通用窗,在高90s dB处具有旁瓣抑制功能,有较宽的主瓣。 7阶Blackman-Harris窗函数有宽广的动态范围,有较宽的主瓣。
Kaiser-Bessel窗在幅值精度、旁瓣距离和旁瓣高度之间取得了较好的平衡。 Kaiser-Bessel窗与Blackman-Harris窗类似,对于相同的主瓣宽度而言,较近的旁瓣更高,较远的旁瓣更低。 选择该窗通常会将信号泄漏至离噪声较近的位置。
Flat top窗也是一个正弦波,穿过0线。 Flat top窗的结果是在频域中产生一个显著宽广的波峰,与其他窗相比离信号的实际幅值更近。
上面列举了几种常见的窗函数。 选择窗函数并没有一个通行的方法。 下表可帮助您做出初步选择。 请始终比较窗函数的性能,从而找到最适合的一种窗函数。