- ConvE——二维卷积知识图谱横空出世
时光诺言
机器学习—图神经网络知识图谱人工智能python卷积神经网络
《Convolutional2DKnowledgeGraphEmbeddings》论文理解+代码复现本论文理解不再翻译原文,只写上我对于论文原生态的理解,应该会比较详细,请读者放心。一.作者为什么要提出ConvE?传统的R-GCN和DistMult的参数量过大,并且模型深度不够深,只能处理较小的知识图谱,所以作者将CNN引入到图神经网络中。二.一维卷积与二维卷积的对比2.1一维卷积当a,b特征简单
- 时序动作定位|使用 ‘注意力机制’ 的弱监督时序动作定位顶会论文理解笔记(Weakly-Supervised Temporal Action Localization)
六个核桃Lu
视频动作定位深度学习人工智能神经网络机器学习计算机视觉
目录WeaklySupervisedActionLocalizationbySparseTemporalPoolingNetwork(CVPR2018)W-TALC:Weakly-supervisedTemporalActivityLocalizationandClassification(ECCV2018)
- 论文理解—— Disentangle-based Continual Graph Representation Learning
qq_26919935
网络表示学习图表示学习知识图谱持续学习
EMNLP2020Disentangle-basedContinualGraphRepresentationLearning链接:https://arxiv.org/abs/2010.02565研究背景:多关系数据表示真实世界中实体和实体之间的关系,其中的节点表示实体,边代表实体之间的关系,比如常见的知识图谱和信息网络等。利用图表示学习方法对多关系图建模一直是学术界和业界关注的热点。图表示学习目的
- Backbone:深层聚合网络:Deep Layer Aggregation(DLA)
AIRV_Gao
论文笔记backbone.js深度学习卷积神经网络
Backbone:DeepLayerAggregation(深层聚合网络,DLA)论文网址:https://arxiv.org/abs/1707.06484论文代码(pytorch):https://github.com/ucbdrive/dla参考博客:DeepLayerAggregation----------论文理解0.摘要DLA是一种融合深层网络的backbone结构。通过更深层次的融合可
- 【论文理解】Spatial Contrastive Learning for Few-Shot Classification
辣椒油li
少样本学习深度学习神经网络少样本学习
内容概览前言一、空间对比学习(SpatialContrastiveLearning)1.对比学习2.全局对比损失3.空间对比损失二、特征的修正三、对比蒸馏(ContrastiveDistillation)四、少样本分类五、实验结果总结前言这篇论文提出了一个采用非episodictraining方法的少样本图像分类算法,作者来自巴黎萨克雷大学,于2020.12.26挂在arxiv上:论文链接这篇论文
- 【论文理解】Batch Normalization论文中关于BN背景和减少内部协变量偏移的解读(论文第1、2节)
takedachia
论文阅读笔记深度学习人工智能神经网络计算机视觉
最近在啃BatchNormalization的原论文(Title:BatchNormalization:AcceleratingDeepNetworkTrainingbyReducingInternalCovariateShift)。详细记录一下对论文前面部分的个人笔记和理解,包括第一部分的Introduction和第二部分的TowardsReducingInternalCovariateShif
- SAM(Segment Anything)论文理解
努力当总裁
人工智能计算机视觉cnn深度学习数据挖掘
【废话可不看】第一次有位教授给我推荐这个Model,我以为只是和往常一样,又出现一个性能稍微提升的算法模型结构,看了一眼名字“分割世间万物”,觉得是个吹水的东东,就没再往下看了。今天老板让我研究研究这个东东,作为打工人,乖乖开启了研究之旅,结果为自己的无知狠狠地打脸!这篇文章具有划时代意义,至少代表了语义分割大模型(没有说视觉大模型,是因为还有分类和检测)的雏形,作者也很慷慨,授人以鱼且授人以渔:
- EfficientDet论文讲解
韩师兄_
算法目标检测论文阅读考研论文笔记
目录EfficientDet0、摘要1、整体架构1.1BackBone:EfficientNet-B01.2Neck:BiFPN特征加强提取网络1.3Head检测头1.4compoundscaling2、anchors先验框3、loss组成4、论文理解5、参考资料EfficientDet影响网络的性能(或者说规模)的三大因素:depth(layer的重复次数),width(特征图channels)
- Prototype-CNN for Few-Shot Object Detection in Remote Sensing Images论文理解
小仝爱吃肥牛
目标检测cnn目标检测神经网络人工智能原型模式
代码:https://github.com/Ybowei/P-CNN目录1.研究背景2.基本概念--Few-ShotObjectDetection3.研究方法PLN--原型学习网络P-GRPN--原型引导的区域生成网络ROIAligh--感兴趣区域对齐Dectionhead--检测头训练策略4.实验结果1.研究背景随着深度学习特别是深度卷积神经网络的兴起,利用其强大的特征提取能力,在自然场景图像中
- BSVD论文理解:Real-time Streaming Video Denoising with Bidirectional Buffers
牧羊女说
图像和视频去噪计算机视觉人工智能深度学习
BSVD是来自香港科技大学的一篇比较新的视频去噪论文,经实践,去噪效果不错,在这里分享一下对这篇论文的理解。论文地址:https://arxiv.org/abs/2207.06937代码地址:GitHub-ChenyangQiQi/BSVD:[ACMMM2022]Real-timeStreamingVideoDenoisingwithBidirectionalBuffers我们都知道,在超低照度拍
- BERT论文理解-理论版
jianafeng
bert自然语言处理深度学习
目录BERT模型架构输入表征预训练任务代码实现Encoder编码器模块BERT模型架构BERT模型架构是一种多层双向变换器(Transformer)编码器。至于什么是变换器的注释及实现,参考哈佛Vaswani等人(2017)的优秀代码指南(http://nlp.seas.harvard.edu/2018/04/03/attention.html)BERT有两种大小:(1)Base版:L=12;H=
- 点云网络的论文理解(二)- PointNet的pytorch复现
BuptBf
PointNet深度学习
1.了解PointNet为了更好的复现这个东西我们需要先了解这个东西,先把原文给出的图片放在这里,之后我们再一点点理解。1.1点云的特点1.1.1无序性:也就是说这个点的先后顺序和实际上是什么无关你不管这些点加入集合的顺序如何,最后的最后他们组成的图形还是那么个图形,也就是说这些东西的顺序是完全没有必要的。所以我们必须使用对称的函数:也就是说,这个函数必须要满足,你怎么调换函数变量的输入顺序,函数
- 【论文理解】FedSky: An Efficient and Privacy-Preserving Scheme for Federated Mobile Crowdsensing
卷卷卷不动
paper论文阅读同态加密
这篇论文同样是来自陆老师组的,发表在IEEEINTERNETOFTHINGSJOURNAL上的一篇关于联邦学习、同态加密的文章。目录论文背景群智感知(CrowdSensing)F-MCS本文的主要贡献模型与设计目标系统模型安全模型设计目标PRELIMINARIESA.FedAvgAlgorithmB.DifferentVariantsofSkylineQueriesC.BilinearPairin
- Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting 论文理解+机翻
顺顺不吃竹笋
剪枝学习深度学习人工智能机器学习
背景:快速的城市化带来了人口的增长,并带来了巨大的流动性和挑战性。在这些挑战中,智能交通系统是一个重要领域,交通预测是城市交通管理的重要部分。问题描述:论文关注的是如何准确的预测未来的交通状况,例如交通流量和速度、乘客需求等。方法:传统的预测方法采用时间序列模型,它们无法捕捉到大规模交通的非线性相关性和复杂的时空模式。论文提出了一种叫做AdaptiveGraphConvolutionalRecur
- 【目标检测】SPP-Net论文理解(超详细版本)
旅途中的宽~
目标检测经典论文导读目标检测深度学习计算机视觉SPPNet
目录:目标检测—SPP-Net论文一、初步认识二、研究背景三、研究动机1.关于图像尺寸的理解2.关于为何全连接层需要固定输入四、SPP-Net作出的改进1.与传统CNN的对比2.与R-CNN的对比1)R-CNN模型2)SPP-Net模型五、SPP-Net中的难点六、原始图像中的ROI如何映射到特征图七、ROI池化层八、总结一、初步认识SPP-Net是出自2015年发表在IEEE上的论文,全名为《S
- yolo3解析
迷途的Go
yolov3解析yolo系列论文看过,源码包调过,抽点时间把论文理解和源码做个一一对应,加深理解,论文https://pjreddie.com/darknet/yolo/源码看的mxnet,gluon-cv,代码地址:https://github.com/dmlc/gluon-cvyolov3networkdarknet53一共53层卷积,除去最后一个FC总共52个卷积用于当做主体网络,主体网络被
- RepVGG论文理解
孟孟单单
论文写作python
目录RepVGG:MakingVGG-styleConvNetsGreatAgain(RepVGG:让vgg风格的ConvNets再次伟大)参考链接结构重参数化的实质3.1.SimpleisFast,Memory-economical,Flexible简单就是快速,节省内存,灵活3.2Training-timeMulti-branchArchitecture培训时-多分支架构3.3Re-param
- 论文理解之面向脑驱动的仿人机器人:基于脑电的BCI异步直接控制
A哆啦A梦
BCI
这篇文章还没有修改很完善,之后会再进行一些修改原论文:TowardBrain-ActuatedHumanoidRobots:AsynchronousDirectControlUsinganEEG-BasedBCI论文链接:https://www.semanticscholar.org/paper/Toward-Brain-Actuated-Humanoid-Robots%3A-Asynchrono
- Focal Loss与GHM 理解与使用
HxShine
Tensorflownlp算法学习总结
一、理解5分钟理解FocalLoss与GHM——解决样本不平衡利器https://zhuanlan.zhihu.com/p/80594704二、使用GHM论文理解及实现https://zheng-yuwei.github.io/2019/07/08/13_GHM%E8%AE%BA%E6%96%87%E7%90%86%E8%A7%A3%E5%8F%8A%E5%AE%9E%E7%8E%B0/ghm-k
- ResNet 论文理解含视频
小喵要摸鱼
ResNet深度残差网络ResNet论文理解
ResNet论文理解问题导引论文理解Q1.神经网络真的越深越好吗?Q2.为什么加深网络会带来退化问题?Q3.如何构建更深层的网络?基于残差的深度学习框架ResidualLearning的理论依据网络结构ResNet的成绩总结视频理解引入恒等映射ResNet论文理解问题导引论文理解ResNet网络的论文名字是《DeepResidualLearningforImageRecognition》,发表在2
- 【计算机视觉 | 扩散模型】新论文 | DragGAN论文:如果甲方想把大象 P 转身,你只需要拖动 GAN 就好了
旅途中的宽~
计算机视觉计算机视觉生成对抗网络深度学习GAN
文章目录一、论文说明二、前言三、论文理解四、实验4.1定性评估4.2定量评估4.3讨论一、论文说明2023年5月18日提交的论文,华人一作。论文地址:https://arxiv.org/pdf/2305.10973.pdf项目地址:https://vcai.mpi-inf.mpg.de/projects/DragGAN/代码地址为:https://github.com/XingangPan/Dra
- 3D深度学习的初步探索(PointNet,PointNet++,Geo-CNN论文理解)
xiaobai_Ry
#点云处理深度学习点云3D检测PointNet
【点云笔记】3D深度学习的初步探索【PointNet,PointNet++,Geo-CNN】概述PPT概览PointNet,PointNet++,Geo-CNN论文PPT自动演示概述下面的PPT及演示是之前课程作业做的,时间已经有些久远(2020年),主要是PointNet,PointNet++,Geo-CNN论文相关要点的介绍。PPT设置的是自动播放模式,对应汇报的语言是调用科大讯飞的机器人语音
- xgboost导读及论文理解
璆_ca09
X-gboost(Extreme-GradientBoosting)优化的分布式梯度提升算法,end-to-end不需要特征抽取。输入原始数据,就能输出目标结果。整篇论文技术实现分两个部分核心点1.算法推导(paper篇幅30%)判别式:判别公式:boosterForest:森林中树的数量,受到max_estimator的约束:森林中的每颗树显而易见,xgboost是非线性(Tree)的加法模型损
- 【音视频第12天】GCC论文阅读(3)
Magic_o
音视频音视频论文阅读
AGoogleCongestionControlAlgorithmforReal-TimeCommunicationdraft-alvestrand-rmcat-congestion-03论文理解看中文的GCC算法一脸懵。看一看英文版的,找一找感觉。目录Abstract1.Introduction1.1Mathematicalnotationconventions2.Systemmodel2.1q
- 【音视频第10天】GCC论文阅读(1)
Magic_o
音视频音视频论文阅读
AGoogleCongestionControlAlgorithmforReal-TimeCommunicationdraft-alvestrand-rmcat-congestion-03论文理解看中文的GCC算法一脸懵。看一看英文版的,找一找感觉。目录Abstract1.Introduction1.1Mathematicalnotationconventions2.Systemmodel3.Fe
- 【音视频第11天】GCC论文阅读(2)
Magic_o
音视频音视频论文阅读ffmpeg
AGoogleCongestionControlAlgorithmforReal-TimeCommunicationdraft-alvestrand-rmcat-congestion-03论文理解看中文的GCC算法一脸懵。看一看英文版的,找一找感觉。目录Abstract1.Introduction1.1Mathematicalnotationconventions2.Systemmodel3.Fe
- Segmentation-driven 6D Object Pose Estimation论文理解
KirutoCode
6DEoF
文章目录本文创新点\贡献方法方法概述分割流回归流训练最终loss推理实验结果总结本文创新点\贡献分割驱动,让每个可以看到的部分都对关键点位置的预测做出贡献方法方法概述假设:物体是刚体且CAD模型已知。对输入的图片做卷积,然后产生分割和预测,将图片分成S×SS\timesSS×S个网格,每个网格都i预测属于的类别并回归关键点的位置,关键点在这里就是交点,然后根据2D-3D对应来做EPnP分割流对每个
- Position-aware Attention and Supervised Data Improve Slot Filling论文理解
qzlydao
论文题目:Position-awareAttentionandSupervisedDataImproveSlotFilling发表作者:YuhaoZhang,VictorZhong,DanqiChen,GaborAngeli,ChristopherD.Manning出版源:Proceedingsofthe2017ConferenceonEmpiricalMethodsinNaturalLangua
- 基于Starts的自制Ekstaz回归测试系统设计与实现 毕业论文++英文论文+答辩PPT+演示视频+项目源码
毕业设计论文资料
目录自制Ekstazi11.缘起12.论文理解11.依赖格式22.分析(A)阶段23.执行(E)阶段34.收集(C)阶段35.非调试校验和33.项目结构&原理讲解3自制Ekstazi1.缘起在自动化测试这门课程中,我学习到了有关源码级测试、移动端测试、智能软件测试的知识,并且对源码级测试产生了浓厚的兴趣。我们知道,回归测试是当今自动化测试研究的热门重点之一,项目中平均80%的测试成本都用在了回归测
- 【目标识别学习笔记系列】一、RCNN论文理解
zl3090
目标识别深度学习
前言:本文是在总结以下博客的基础上对RCNN的理解,感谢原作者文章,使我收获很大,在此整理笔记,仅作学习用途。https://blog.csdn.net/shenxiaolu1984/article/details/51066975https://blog.csdn.net/u011534057/article/details/51218250RegionCNN(RCNN)可以说是利用深度学习进行
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23