大数据学习日记day2

suffer

  • mapreduce中,map阶段处理的数据如何传递给reduce阶段,是mapreduce框架中最关键的一个流程,这个流程就叫shuffle
  • 核心机制:数据分区,排序,缓存

详细流程

  1. maptask收集map()方法输出的kv对,放到内存缓冲区中
  2. 从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
  3. 多个溢出文件会被合并成大的溢出文件
  4. 在溢出过程中,及合并的过程中,都要调用partitioner进行分组和针对key进行排序
  5. reducetask根据自己的分区号,去各个maptask机器上取相应的结果分区数据
  6. reducetask会取到同一个分区的来自不同maptask的结果文件,reducetask会将这些文件再进行合并归并排序
  7. 合并成大文件后,shuffle的过程也就结束了,后面进入reducetask的逻辑运算过程(从文件中取出一个一个的键值对group,调用用户自定义的reduce()方法)

yarn的概念和工作流程

  • Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而mapreduce等运算程序则相当于运行于操作系统之上的应用程序

你可能感兴趣的:(大数据学习笔记)