迷糊糊的Trie树 - 中英文字典树

英文字典树

    英文字典树的结构图是这样的。按照树型结构存储字符串,每个结点存一个字符,自顶向下做标记的就是词的词尾,比如,app,apple,application,abstract,absorb,block,black,blake... 等等

    介绍一下英文字典树的结点数据结构:

        1.词频 int型变量记录词频

        2.结点型数组,长度26下标对应0 - 25(也就是当前字符 ' ? ' -  ' a ' 用字符ASCII码做运算,值域 0 - 25)

        3.flag标记,当前结点是否构成单词        

        4.结点值        

    迷糊糊的Trie树 - 中英文字典树_第1张图片

中文字典树:

     结构和英文字典树相似,但是因为中文的原因,我们没有使用数组,用字符+-的方式来计算显然不行了。所以这里我用的hashmap存的下一位的孩子们。

      看一下中文字典树的图:

       迷糊糊的Trie树 - 中英文字典树_第2张图片

    数据结构:

        public Integer frequency;    //词频
        public Boolean isWords;      //是否是词
        public Character values;        //值
        public HashMap childNodes ;    //孩子们

   插入:

          拿到一个词,拆开,从词的第一个字开始找,找到了就拿第二个字继续往下找,找不到拿当前做比较的字开辟结点。

          插入时注意好维护每个结点的词频,而且还要看是否是最后一个字,插入最后一个字的时候要标记当前字为词结点。

    查找:

          也就是拿词拆开,挨个比较,找到了就输出并返回true。

    删除词:

          在找词的过程中把孩子 > 1的结点压入栈,找到词后把栈顶元素和当前词相关的元素抹去就ok了。

迷糊糊的Trie树 - 中英文字典树_第3张图片  迷糊糊的Trie树 - 中英文字典树_第4张图片

中文字典树源代码:

package com.cccl.datastruct.Tree.tiretree;

import com.cccl.datastruct.queue.MyLinkedQueue;

import java.util.*;

public class Trie {

    private static Integer[] level = { 1,0,0,0, 0,0,0,0 }; //trie树 词应该不会超过8的长度   树也最高也就五六层  词语

    private TrieNode trieRoot;
    public Trie(){
        trieRoot = new TrieNode();
        trieRoot.frequency = 0;
    }

    /**
     * 插入中文词组
     * @param data
     * @return
     */
    public Boolean insert(String data){
        ArrayList arrays =  toStringArrays(data);
        TrieNode point = trieRoot;
        TrieNode nextChild = null;
        String nowArraysStr = "";
        for (int i = 0; i < arrays.size(); i++) {
            point.frequency++;
            nowArraysStr = arrays.get(i);
            nextChild = point.childNodes.get(nowArraysStr);
            if (nextChild == null){
                TrieNode addTire = new TrieNode(nowArraysStr.charAt(0));
                if (i == arrays.size()-1){
                    addTire.isWords = true;
                    addTire.frequency = 1;
                    point.childNodes.put(nowArraysStr,addTire);
                    level[i+1]++;
                    break;
                }
                point.childNodes.put(nowArraysStr,addTire);
                level[i+1]++;
                point = addTire;
            }else {
                point = nextChild;
            }
        }
        return true;
    }

    /**
     * 查询词组
     * @param data
     * @return
     */
    public Boolean searchWords(String data){
        ArrayList arrays =  toStringArrays(data);
        TrieNode point = trieRoot;
        TrieNode nextChild = null;
        String s = "";
        for (int i = 0; i < arrays.size(); i++) {
            nextChild = point.childNodes.get(arrays.get(i));
            if (nextChild == null){
                return false;
            }else {
                point = nextChild;
                showPointInfo(point);
                s += point.values;
            }
        }
        System.out.println(s);
        return true;
    }


    /**
     * 查询前缀词频
     * @param data
     * @return
     */
    public boolean searchPreWord(String data){
        ArrayList arrays =  toStringArrays(data);
        TrieNode point = trieRoot;
        TrieNode nextChild = null;
        String s = "";
        for (int i = 0; i < arrays.size(); i++) {
            nextChild = point.childNodes.get(arrays.get(i));
            if (nextChild == null){
                System.out.println("没有此前缀!");
                return false;
            }else {
                point = nextChild;

            }
        }
        showPointInfo(point);
        return true;
    }

    /**
     * 层序遍历trie树
     */
    public void showTrieTree(){
        TrieNode point = trieRoot;
        MyLinkedQueue queue = new MyLinkedQueue();
        queue.enQueue(point);
        Integer lev = 0;
        Integer count = 0;
        while (queue.getCount()>0){
            TrieNode trieNode = queue.deQueue();
            Collection childs = trieNode.childNodes.values();
            Iterator iterator = childs.iterator();
            while (iterator.hasNext()){
                queue.enQueue(iterator.next());
            }
            System.out.print(trieNode.values + "  ");
            count++;
            if (count == level[lev]){
                System.out.println();
                lev++;
                count = 0;
            }
        }
    }

    /**
     * 主函数
     * @param args
     */
    public static void main(String[] args) {
        String[] strings = {"天天向上","天人合一","天天学习","我是大神","快马加鞭"};
        Trie trie = new Trie();
        for (String s:
                strings) {
            trie.insert(s);
        }
        //  trie.searchWords("天天向上");
        // trie.searchPreWord("天天");
        trie.showTrieTree();
    }

    public class TrieNode {

        public TrieNode(){
            childNodes = new HashMap(8);
            isWords = false;
            frequency = 0;
            values = '根';
        }
        public TrieNode(Character data) {
            childNodes = new HashMap(8);
            isWords = false;
            frequency = 0;
            values = data;
        }

        public Integer frequency;
        public Boolean isWords;
        public Character values;
        public HashMap childNodes ;

        @Override
        public String toString() {
            return "TrieNode{" +
                    "frequency=" + frequency +
                    ", isWords=" + isWords +
                    ", values=" + values +
                    ", childNodes=" + childNodes.toString() +
                    '}'+'\n';
        }
    }

    private void showPointInfo(TrieNode point){
        System.out.println("当前  结点值:" + point.values);
        System.out.println("当前结点词频:" + point.frequency);
        System.out.print("当前结点孩子:");
        Set chs = point.childNodes.keySet();
        Iterator iterator = chs.iterator();
        while (iterator.hasNext()){
            System.out.print(" " + iterator.next());
        }
        System.out.println();
    }

    private static ArrayList toStringArrays(String data){
        ArrayList result = new ArrayList(data.length());
        for (int i = 0; i < data.length(); i++) {
            result.add("" + data.charAt(i));
        }
        return result;
    }

    @Override
    public String toString() {
        return "Trie{" +
                "trieRoot=" + trieRoot.toString() +
                '}';
    }
}

因为层序遍历用到了队列,队列代码:

package com.cccl.datastruct.queue;

/**
 * Created by 小H on 2018/3/21.
 */
public class MyLinkedQueue {


    public Node front = null;
    public Node rear = null;
    private Integer count = 0;
    public Integer getCount() {
        return count;
    }
    public MyLinkedQueue(){
        initQueue();
    }

    /**
     * 初始化队列
     */
    private void initQueue(){
        front = new Node();
        rear = front;
    }

    /**
     * 销毁队列
     */
    public void destroyQueue(){
        front = null;
        rear = null;
    }

    /**
     * 入队
     * @param data
     * @return
     */
    public boolean enQueue(T data){
        try {
            Node node = new Node(data);
            node.pre = rear;
            rear.next = node;
            rear = rear.next;
            count++;
            return true;
        }catch (Exception e){
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 出队
     * @return
     */
    public T deQueue(){
        try {
            if(front == rear) {
                System.out.println("没有元素了,不能出队了");
                return null;
            }
            front = front.next;
            count--;
            return front.data;
        }catch (Exception e){
            e.printStackTrace();
            return null;
        }
    }

    /**
     * 返回队头元素
     * @return
     */
    public T getQueue(){
        try {
            if(front == rear) {
                System.out.println("没有元素了,不能找到队头元素了");
                return null;
            }
            return front.next.data;
        }catch (Exception e){
            e.printStackTrace();
            return null;
        }
    }

    private static class Node{
        public Node pre = null;
        public Node next = null;
        public T data = null;
        public Node(){}
        public Node(T d){
            data = d;
        }
    }



}


你可能感兴趣的:(trie,字典树,数据结构)