背包问题

最初形态:01背包问题

有i种不同的物品,每种物品有对应的体积w,价值v,我们有一个体积为W的背包,要求每种类型的物品最多只能放一次(0-1)

(1)求在背包体积的限制下,可以装下的最大物品价值   dp[i] = Math.max(dp[i, dp[i - w] + v);

(2)判断是否恰好可以将背包装满(是否可以把一个数组分成和相等的两部分)dp[0]=true; dp[i]=dp[i]||dp[i-val];

(3)求恰好能把背包装满的最大/小物品数   dp[i][j]=Math.max(dp[i-sum[0]][j-sum[1]]+1,dp[i][j]);

(4)有几种装满的物品搭配方式   dp[0]=1;dp[i]+=dp[i-val];

 

定义一个二维数组 dp 存储最大价值,其中 dp[i][j] 表示前 i 件物品体积不超过 j 的情况下能达到的最大价值。设第 i 件物品体积为 w,价值为 v,根据第 i 件物品是否添加到背包中,可以分两种情况讨论:

  • 第 i 件物品没添加到背包,总体积不超过 j 的前 i 件物品的最大价值就是总体积不超过 j 的前 i-1 件物品的最大价值,dp[i][j] = dp[i-1][j]。
  • 第 i 件物品添加到背包中,dp[i][j] = dp[i-1][j-w] + v。

第 i 件物品可添加也可以不添加,取决于哪种情况下最大价值更大。因此,0-1 背包的状态转移方程为:

 

// W 为背包总体积
// N 为物品数量
// weights 数组存储 N 个物品的重量
// values 数组存储 N 个物品的价值
public int knapsack(int W, int N, int[] weights, int[] values) {
    int[][] dp = new int[N + 1][W + 1];
    for (int i = 1; i <= N; i++) {
        int w = weights[i - 1], v = values[i - 1];
        for (int j = 1; j <= W; j++) {
            if (j >= w) {
                dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - w] + v);
            } else {
                dp[i][j] = dp[i - 1][j];
            }
        }
    }
    return dp[N][W];
}

空间优化

在程序实现时可以对 0-1 背包做优化。观察状态转移方程可以知道,前 i 件物品的状态仅与前 i-1 件物品的状态有关,因此可以将 dp 定义为一维数组,其中 dp[j] 既可以表示 dp[i-1][j] 也可以表示 dp[i][j]。此时,

 

因为 dp[j-w] 表示 dp[i-1][j-w],因此不能先求 dp[i][j-w],防止将 dp[i-1][j-w] 覆盖。也就是说要先计算 dp[i][j] 再计算 dp[i][j-w],在程序实现时需要按倒序来循环求解。

public int knapsack(int W, int N, int[] weights, int[] values) {
    int[] dp = new int[W + 1];
    for (int i = 1; i <= N; i++) {
        int w = weights[i - 1], v = values[i - 1];
        for (int j = W; j >= 1; j--) {
            if (j >= w) {
                dp[j] = Math.max(dp[j], dp[j - w] + v);
            }
        }
    }
    return dp[W];
}

变种

  • 完全背包:物品数量为无限个

  • 多重背包:物品数量有限制

  • 多维费用背包:物品不仅有重量,还有体积,同时考虑这两种限制

  • 其它:物品之间相互约束或者依赖

 

你可能感兴趣的:(算法总结)