- 探索数据的奥秘:一份深入浅出的数据分析入门指南
uncle_ll
数据库数据分析数据挖掘入门
数据分析书籍推荐入门读物深入浅出数据分析啤酒与尿布数据之美数学之美数据分析ScipyandNumpyPythonforDataAnalysisBadDataHandbook集体智慧编程MachineLearninginAction机器学习实战BuildingMachineLearningSystemswithPython数据挖掘导论MachineLearningforHackers专业读物Intr
- 一个月读完6本书?这些烧脑神书,你能读完1本,就是学霸!
大数据v
导读:宅家有刷不完的剧、打不完的游戏?在线听课又走神了?一觉醒来假期又延长了?但假期虽漫长,终究有开学的那天。那么应该为迟来的开学做哪些准备?停课不停学!近日,著名经济学者薛兆丰在得到app上发起“一个月读完6本书”的挑战。但数据叔今天推荐的这些书,一个月读完6本真的有难度。只要读完1本,你这个月就没有虚度,一定收获满满;只要读完1本,你就打败了全国99%的宅家小伙伴!1数据挖掘导论(原书第2版)
- 《数据挖掘导论》学习 | 第九章 聚类分析:其他问题与算法
蕴玉山辉,怀珠川媚
数据挖掘导论数据科学数据挖掘
目录第九章聚类分析:其他问题与算法数据、簇和聚类算法的特性比较K均值和DBSCAN数据特性簇特性聚类算法的一般特性基于原型的聚类模糊聚类使用混合模型的聚类自组织映射基于密度的聚类基于网格的聚类子空间聚类基于图的聚类稀疏化最小生成树聚类OPOSSUM:使用METIS的稀疏相似度最优划分Chameleon:使用动态建模的层次聚类共享最近邻相似度Jarvis-Patrick聚类算法SNN密度可伸缩的聚类
- 数据挖掘导论 第4章 分类:基本概念、决策树与模型评估
??yy
数据结构与算法人工智能
第4章分类:基本概念、决策树与模型评估分类(classification):分类任务就是通过学习得到一个目标函数(targetfunction)f,把每个属性集x映射到一个余弦定义的类标号y。目标函数也称为分类模型(classificationmodel)。属性可以是离散的或者连续的,但类标号必须是离散的,这正是分类与回归(regression)的关键特征。回归是一种预测建模任务,其中目标属性y是
- 数据挖掘导论课后习题答案-第一章
洋子_
数据挖掘数据挖掘数据库人工智能数据挖掘导论数据挖掘导论习题
IntroductionDiscusswhetherornoteachofthefollowingactivitiesisadataminingtask.(a)Dividingthecustomersofacompanyaccordingtotheirgender.No.Thisisasimpledatabasequery.(b)Dividingthecustomersofacompanyacco
- 数据挖掘导论学习笔记(四)
进阶中的程序猿
数据挖掘导论基础知识数据挖掘
第五章分类:其他技术基于规则的分类器:每一个分类规则可以表示为如下形式:ri:(条件i)---->yi规则:(条件i)规则前件或前提:规则左边规则后件:规则右边,包含预测类yi分类规则的质量衡量:给定数据集D和分类规则r:A---->y(1)覆盖率:D中触发规则r的记录所占比例(2)准群率或置信因子:触发r的记录中类标号等于y的记录所占比例。基于规则的分类器的工作原理:确保分类器能对记录做出可靠的
- 《数据挖掘导论》学习笔记:第1-2章
bakalaka
数据挖掘理论
本文转载自:https://blog.csdn.net/u013232035/article/details/48281659本文主要是在学习《数据挖掘导论(完整版)》中的学习笔记,主要用来梳理思路,并没有多少思考。第1章绪论1.1什么是数据挖掘KDD:KnowledgeDiscoveryinDatabase过程如下:CreatedwithRaphaël2.1.0输入数据数据预处理数据挖掘后处理信
- 《数据挖掘导论》归纳笔记
oh panda
数据挖掘笔记人工智能
目录第一章绪论第二章数据2.0引言2.0.1数据类型2.0.2数据的质量2.0.3使数据适合挖掘的预处理步骤2.0.4根据数据联系分析数据2.1数据类型2.1.1属性与度量2.1.2数据集的类型2.2数据质量2.2.1测量和数据收集问题2.2.2关于应用的问题2.3数据预处理2.3.1聚集2.3.2抽样2.3.3维归约2.3.4特征子集选择2.3.5特征创建2.3.6离散化和二元化2.3.7变量变
- 《数据挖掘导论》学习笔记
小乖的晴天
数据挖掘
写在前面:粗体字为书中定义,红色字体为笔者认为的重点词。【第一章:绪论】1.数据挖掘:在大型数据存储库中,自动地发现有用信息的过程。2.数据预处理步骤:融合来自多个数据源的数据,清洗数据以及消除噪声和重复的观测值,选择与当前数据挖掘任务相关的记录和特征。3.数据挖掘要解决的问题:可伸缩,高维性,异种数据和复杂数据,数据的所有权和分布,非传统的分析。4.数据挖掘任务:预测任务,描述任务。四种主要数据
- 《数据挖掘导论》学习笔记(第1-2章)
schdut
数据挖掘默认数据挖掘数据挖掘导论
《数据挖掘导论》学习笔记(第1-2章)转载:《数据挖掘导论》学习笔记(第1-2章)——Wr_Ran第1章绪论1.1什么是数据挖掘KDD:KnowledgeDiscoveryinDatabase过程如下:1.输入数据2.数据预处理3.数据挖掘4.后处理5.得到信息其中,数据预处理包括如下几部分:特征选择维归约规范化选择数据子集后处理包括如下及部分:模式过滤可视化模式表达1.2数据挖掘要解决的问题可伸
- 数据挖掘导论学习笔记 第六章 关联分析:基本概念和算法
李烟云
数据挖掘算法fp树结构
6.1问题定义关联分析(associationanalysis)用于发现隐藏在大型数据集中有意义的联系,所发现的联系可以用关联规则或者频繁项集的形式表示项集和支持度计数以购物篮数据集为例TID面包牛奶尿布…1110…2101……5111…令I={i1,i2,…,id}I=\{i_1,i_2,\ldots,i_d\}I={i1,i2,…,id}表示所有项的集合,T={t1,…,tN}T=\{t_1,
- 数据挖掘导论学习笔记1(第1 、2章)
蔬菜院院长
数据挖掘导论数据挖掘学习笔记
参考:https://blog.csdn.net/u013232035/article/details/48281659?spm=1001.2014.3001.5506和《数据挖掘导论》学习笔记(第1-2章)_时机性样本_schdut的博客-CSDN博客第1章绪论数据挖掘是一种技术,它将传统的数据分析方法与处理大量数据的复杂算法相结合。数据分析技术的应用:商务:借助POS(销售点)数据收集技术【条
- 数据挖掘导论 N个考试常用的问题
山野行者syh
数据挖掘kdd决策树神经网络
目录第一章认识数据挖掘1、什么是数据中“隐含”的信息2、数据挖掘主要研究什么内容?它和数据库、数据查询、专家系统、数理统计有什么不同?3、辨析:数据、信息、知识4、有指导和无指导学习的联系和区别是什么5、如何理解数据挖掘的不同角度的定义6、数据挖掘与专家系统的联系和区别是什么?7、数据挖掘工作的基本流程是什么?8、数据挖掘的作用作业1第二章基本数据挖掘技术1、决策树算法的关键技术2、选择最能区别数
- 数据挖掘导论——支持向量机
PolarBearWYY
明天就要讲课了,总觉得,还是拿代码说事儿,最靠谱,最有说服力https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html经常用到sklearn中的SVC函数,这里把文档中的参数翻译了一些,以备不时之需。本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方。(PS:libsvm中的二次规划问题的解决算
- 推荐算法-协同过滤1 概述
limus
协同过滤用户一起和网站互动,使得自己的推荐列表不断过滤掉不感兴趣的物品,从而越来越满足自己的要求。用户行为用户行为举例当当网浏览“”数据挖掘导论“,推荐“还买过”web数据挖掘用户行为的提取从日志中挖掘会话日志->记录查询+返回结果+点击。评分系统:视频的喜欢/不喜欢和豆瓣评论的5级用户行为的存储hadoopHive,Googledremel,hadoopdrill用户行为的特点用户越活跃,越倾向
- 《数据挖掘导论》CH4分类:基本概念、决策树与模型评估-读书笔记
Schnell
分类任务就是确定对象属于哪个预定义的目标类(店铺病历表,款式判断)4.1预备知识分类计数非常适合预测或描述二元或标称类型的数据集,但是分类技术不考虑隐含的序数关系。4.2解决分类问题的一般方法(方法论)P91(图4-3)分类技术是一种根据输入数据集建立分类模型的系统方法。分类法包括:决策树分类法,基于规则的分类法,神经网络,支持向量机和朴素贝叶斯分类法。分类模型能够很好的拟合输入数据中类标号和属性
- 在数据分析、挖掘方面,有哪些好书值得推荐?
python大数据分析
最近看到有人在问,在数据分析、挖掘方面,有哪些好书值得推荐?推荐三本书,分别是统计、编程、算法方向的核心教程,非常适合新手去看。StatisticsforBusinessandEconomics-商务与经济统计PythonforDataAnalysis-利用Python进行数据分析IntroductiontoDataMining-数据挖掘导论如果你是学R的,可以再加一本R语言实战为什么选这三本书呢
- 《数据挖掘导论》CH3探索数据-读书笔记
Schnell
3.2数据汇总频率,众数,百分位数,位置度量(均值和中位数),散布度量(极差和方差),多元汇总统计(相关矩阵)3.3可视化3.4OLAP和多维数据分析创建按月和按产品类别描述特定地点的销售活动汇总3.4.2多维数据:一般情况3.4.3分析多维数据1.数据立方体:计算聚集量从多维角度看待数据的主要动机就是需要以多种方式聚集数据2.维归约和转轴聚集可以认为是一种降维-转轴-切片和切块-****上卷和下
- 《数据挖掘导论》CH5.3贝叶斯分类器
Schnell
背景:属性集和类变量之间的关系是不确定的,其一,噪声数据的干扰;其二,出现某些影响分类的因素没有包含在属性集中。因此,出现一种对属性集和类变量的概率关系建模的方法。贝叶斯定理是把类的先验知识和从数据中收集的新证据相结合的统计原理。它可以通过先验概率、类条件概率和证据来表示后验概率。(5-11)对于类条件概率的估算有两种方法:5.3.3朴素贝叶斯分类器1.前提:条件独立性:属性集的属性(条件)与类之
- 数据挖掘导论 笔记3
ccyyawsl
笔记数据挖掘
给定一个无序的、分类的值的集合,为了进一步刻画值的性质,除计算特定数据集中每个值出现的频率外没有多少的事情可做。给定一个在{1,…Vi,…Vk}.上取值的分类属性x和m个对象的集合,值vi的频率定义为:分类属性的众数(mode)是具有最高频率的值。百分位数对于有序数据,考虑值集的百分位数(percentile)更有意义。具体地说,给定-一个有序的或连续的属性x和0与100之间的数p,第p个百分位数
- hash tree在apriori算法中如何进行支持度计数 数据挖掘导论(完整版)第六章
schdut
默认数据挖掘数据挖掘hashtree
好几天没写博客了,把之前在知乎上的一个回答搬了过来。题目链接:hashtree在apriori算法中是如何进行支持度计数?我的回答如下:基本上看懂了,所以来答一发。我认为这本书写得很好,数据挖掘入门首选。P211中图6-9就是用Hash方法枚举事务t={1,2,3,5,6}的3-项集,这个图应该很好理解。P212中图6-11其实是作者举的一个例子:此图为一个Hash树,树中结点为候选项集,树中结点
- 推荐算法--基于物品的协同过滤算法
千寻~
机器学习推荐算法基于物品的协同过滤算法
“无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。”ItemCF:ItemCollaborationFilter,基于物品的协同过滤算法核心思想:给用户推荐那些和他们之前喜欢的物品相似的物品。比如,用户A之前买过《数据挖掘导论》,该算法会根据此行为给你推荐《机器学习》,但是Ite
- 《数据挖掘导论》CH5.1基于规则的分类器-读书笔记(2)
Schnell
5.1基于规则的分类器形式:规则-预测类if-then(和决策树区别,决策树规则有总分,规则分类是平行的,但是它俩可以转换)5.1.1原理:1.互斥规则:一条记录不能出现多个预测类,避免多个类出现的方法有:有序规则(规则按优先降序排列)和无序规则(产生多个预测类,进行加权计票)2.穷举规则:每天记录都应有预测类,不行就整一个其他类5.1.2规则的排序方案:1.基于规则排序:秩越前,越容易被解释,秩
- 【某航】k-means聚类t-sne可视化——数据挖掘导论
农夫小田
课程学习聚类机器学习数据分析python
代码链接:github代码1.任务要求分析Clustering_ALS数据集,对疾病类型进行聚类分析。2.读取数据:ALS.csv2223rows×101columns3.数据分析与可视化(1)数值型数据分布统计:(data_distribute.png)对每一列数据绘制直方图(质量分布图),它是表示数据分布情况的一种主要工具。其中y轴是密度,而不是概率。通过对每一类列数据做数据分布的统计,可以看
- 学习笔记(01):以性别预测为例,谈谈数据挖掘中常见的分类算法-数据挖掘的基本流程和常见的分类算法...
teth
研发管理数据挖掘深度学习大数据云计算/大数据
立即学习:https://edu.csdn.net/course/play/1948/30060?utm_source=blogtoedu一.数据挖掘基础数据挖掘:用各种方法(统计学、机器学习、爬虫)来解决各种实际问题;机器学习:算法层面数据挖掘工程师:程序员入门:通俗;1.PCI(集体智慧编程)2.写个程序....(直接下载)3.数学之美(纸质版无拓展阅读)正统:1机器.数据挖掘导论2.数据挖掘
- 数据挖掘导论阅读笔记第一章:绪论
つ天然呆¹³¹⁴
数据挖掘
数据挖掘导论(完整版)阅读笔记--第一章了解数据挖掘一、什么是数据挖掘二、了解KDD三、数据挖掘要解决的问题(了解即可)四、数据挖掘任务了解数据挖掘一、什么是数据挖掘数据挖掘是在大型数据存储库中,自动地发现有用信息的过程。数据挖掘技术用来探查大型数据库,发现先前未知的有用模式。这部分的重点在于区别:数据挖掘技术和其他信息检索任务例如:根据可赢利性划分公司客户答案:这不是数据挖掘任务,这是一个会计计
- 【数据挖掘——第一章 绪论】
一天雪
【数据挖掘】Python数据挖掘python
本文所使用的书籍为《数据挖掘导论》第一章绪论数据挖掘是一种技术,它将传统的数据分析方法与处理大量数据的复杂算法相结合。1.1什么是数据挖掘数据挖掘是在大型数据存储库中,自动地发现有用信息的过程。下面是数据库中知识发现(KDD)过程:数据预处理的目的是将未加工的输入数据转换成适合分析的形式。数据预处理设计的步骤包括融合来自多个数据源的数据,清洗数据以消除噪声和重复的观测值,选择与当前数据挖掘任务相关
- 《数据挖掘导论》绪论
Joutlier
数据挖掘导论笔记数据挖掘python
数据挖掘概念数据挖掘是在大型数据存储库中,自动的发现有用信息的过程,是数据库中知识发现(KDD)的一部分。数据挖掘任务预测建模:训练一个模型,使目标变量预测值与实际值之间的误差达到最小。有两类预测建模任务:分类,用于预测离散的目标变量;回归,用于预测连续的目标变量。如,根据花的特征预测花的种类。关联分析:用来发现描述数据中强关联特征的模式。如,用来发现顾客经常同时购买的商品。聚类分析:旨在发现紧密
- 多元线性回归,岭回归,lasso回归(具体代码(包括调用库代码和手写代码实现)+一点点心得)
Rainy maple
多元线性回归岭回归lasso回归机器学习python
最近数据挖掘导论老师布置了一项作业,主要就是线性回归的实现,笔者之前听过吴恩达的线性回归的网课,但一直没有进行代码的实现,这次正好相对系统的整理一下,方便各位同学的学习,也希望能够对其进行优化,优化的点最后再说。笔者写这篇博客也为了给实验报告打底稿,各位小伙伴2021年9月30号提交报告的时候别跟我实验报告一样啊,打回的话苦的是自己人,到时候我直接一波举报,哈哈哈。不过,发表这篇文章笔者是真的希望
- zscore标准化步骤_z-score的标准化究竟怎么弄?
weixin_39713335
zscore标准化步骤
在学习「数据挖掘导论」的数据预处理时,里面谈到了变量变换,我联想到了在基因表达量分析时的常见操作,例如FPKM,TPM,CPM,log对数变换。比如说在文章里面会见到如下的描述ThesizefactorofeachcellwascomputedusingapoolingstrategyimplementedintheRfunctioncomputeSumFactors.Normalizedcoun
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多