- 深度视觉目标跟踪进展综述-论文笔记
pzb19841116
计算机视觉目标跟踪人工智能计算机视觉
中科大学报上的一篇综述,总结得很详细,整理了相关笔记。1引言目标跟踪旨在基于初始帧中指定的感兴趣目标(一般用矩形框表示),在后续帧中对该目标进行持续的定位。基于深度学习的跟踪算法,采用的框架包括相关滤波器、分类式网络、双路网络等。处理跟踪任务的角度,分为基于匹配思路的双路网络和基于二分类的辨别式跟踪器。最初的深度跟踪算法聚焦于相关滤波器,通过深度学习的特征+相关滤波器实现。基于双路网络跟踪算法那,
- 相关滤波
AI视觉网奇
视觉相关
https://zhuanlan.zhihu.com/p/39923038相关滤波的本质就是一个尺寸特别大(跟patch一样大)的cnn卷积核。所以kcf不仅可以用闭式解求解,也可以用梯度下降求解。kcf中α迭代也是用0.05的系数,很类似学习率这个东西。kcf本身的所谓缺点:边缘效应完全是由于求解需要用傅立叶变换才导致的。原因是如果不用傅立叶变换求解,而采用梯度下降求解,就不需要使得w的尺寸和图
- MOOSE相关滤波跟踪算法(个人学习笔记)
CHEN7_98
算法学习笔记
MOOSE论文标题“VisualObjectTrackingusingAdaptiveCorrelationFilters”原文地址用滤波器对目标外观进行建模,并通过卷积操作来执行跟踪。参考阅读:目标跟踪经典算法——MOSSE(MinimumOutputSumSquareError)目标跟踪整理(1)之MOSSE相关滤波跟踪原理基于以初始帧中给定的boundingbox来选择目标,并基于示例图像上
- 单目标跟踪算法SiamRPN
AAI机器之心
目标跟踪算法人工智能YOLO计算机视觉机器学习深度学习
目标跟踪算法包括单目标跟踪和多目标跟踪,单目标跟踪在每张图片中只跟踪一个目标。目前单目标跟踪的主要方法分为两大类,基于相关滤波(correlationfilter)的跟踪算法,如CSK,KCF,DCF,SRDCF等;基于深度学习的跟踪算法,如SiamFC,SiamRPN,SiamRPN++等。相比之下,相关滤波的速度更快,深度学习的准确性更高。跟踪相关算法如下:这里主要记录下对SIamRPN跟踪算
- 基于深度学习的视觉目标跟踪进展综述
pzb19841116
人工智能计算机视觉论文解读目标跟踪人工智能计算机视觉
1引言目标跟踪旨在基于初始帧中指定的感兴趣目标(一般用矩形框表示),在后续帧中对该目标进行持续的定位。基于深度学习的跟踪算法,采用的框架包括相关滤波器、分类式网络、双路网络等。处理跟踪任务的角度,分为基于匹配思路的双路网络和基于二分类的辨别式跟踪器。最初的深度跟踪算法聚焦于相关滤波器,通过深度学习的特征+相关滤波器实现。基于双路网络跟踪算法那,将跟踪视为模板匹配,抗干扰能力较差。近期基于Trans
- 【ITK库学习】使用itk库进行图像滤波ImageFilter:频域滤波
leafpipi
ITK学习计算机视觉算法图像处理c++
目录1、itkFFTConvolutionImageFilter快速傅里叶变换计算2、扩展:itkConvolutionImageFilter.h3、itkFFTShiftImageFilter频率转移滤波器4、itkFFTNormalizedCorrelationImageFilterFFT实现的归一化相关滤波器1、itkFFTConvolutionImageFilter快速傅里叶变换计算该类使
- DCFnet - Discrimitive Correlation Filters Network for Visual Tracking 笔记
橙子潘潘
摘要基于判别相关滤波器(DCF)的方法现在成为在线对象跟踪的主要方法。在本文工作中,提出一个轻量级的端到端训练的网络,DCFnet,同时学习深度特征和执行滤波过程。体来说,作者将DCF视为在Siamese网络中添加的特殊相关滤波器层,并通过将网络输出定义为对象位置的概率热图来仔细地通过它来推导反向传播。因为推导仍然在傅里叶域内进行,所以保留了DCF高效的特性。在测试时,文中的tracker能达到6
- 【跟踪器攻击】IOU Attack 代码解读
prinTao
计算机视觉深度学习人工智能
简介提出了IoU攻击,它根据当前帧和历史帧的预测IoU分数顺序生成扰动。通过降低IoU分数,所提出的攻击方法相应地降低了时间相干边界框(即对象运动)的准确性。此外,我们将学习到的扰动转移到接下来的几帧以初始化时间运动攻击。我们在最先进的深度跟踪器(即基于检测、基于相关滤波器和长期跟踪器)上验证了提议的IoU攻击。对基准数据集的大量实验表明了所提出的IoU攻击方法的有效性。源代码可在此httpsUR
- 【目标跟踪】ECO算法论文阅读:ECO: Efficient Convolution Operators for Tracking
ctrl A_ctrl C_ctrl V
#目标检测目标跟踪算法论文阅读
文章目录1.论文概要2.研究背景和动机3.相关滤波用于目标跟踪的原理4.ECO算法流程5.ECO算法创新点5.1特征降维:PCA5.2训练集简化:GMM5.3模型更新策略:间歇更新1.论文概要论文下载地址:ECO:EfficientConvolutionOperatorsforTracking发表时间:CVPR2017作者:MartinDanelljan(瑞典),目标跟踪领域的大牛官方代码:htt
- 自相关函数与互相关函数
starmier
最近做相关滤波追踪的时候,遇到了瓶颈,所以想从头到尾理一理基础知识。1、概念相关函数是描述信号X(s),Y(t)(这两个信号可以是随机的,也可以是确定的)在任意两个不同时刻s、t的取值之间的相关程度。两个信号之间的相似性大小用相关系数来衡量。定义:image.png称为变量X和Y的相关系数。若相关系数=0,则称X与Y不相关。相关系数越大,相关性越大,但肯定小于或者等于1.。相关函数分为自相关和互相
- SRDCF
aqiangdeba
完全参考知乎大佬YaqiLYU的专栏https://zhuanlan.zhihu.com/p/26417182总体来说,相关滤波类方法对快速变形和快速运动情况的跟踪效果不好。快速变形主要因为CF是模板类方法。容易跟丢这个比较好理解,前面分析了相关滤波是模板类方法,如果目标快速变形,那基于HOG的梯度模板肯定就跟不上了,如果快速变色,那基于CN的颜色模板肯定也就跟不上了。这个还和模型更新策略与更新速
- 目标跟踪检测算法(三)——相关滤波与深度学习应用
xwqh
姓名:刘帆;学号:20021210609;学院:电子工程学院转载于:https://blog.csdn.net/qq_34919792/article/details/89893433【嵌牛导读】基于相关滤波的跟踪算法,提出了与深度学习相关的应用【嵌牛鼻子】相关滤波,深度学习应用【嵌牛提问】什么是相关滤波?基于深度学习的跟踪算法有哪些?深度学习和相关滤波如何结合?【嵌牛正文】第三阶段(2012年~
- opencv跟踪学习之KCF
味千爱拉面
opencvKCF基本原理跟踪
KCF全称为KernelCorrelationFilter核相关滤波算法。相关滤波算法算是判别式跟踪,主要是通过核相关滤波器使用给出的样本去训练一个判别分类器,判断跟踪到的是目标还是周围的背景信息。主要使用轮转矩阵对样本进行采集,使用快速傅里叶变化对算法进行加速计算。相关滤波器是根据之前的MOSSE算法改进的,可以说是后来CSK、STC、ColorAttributes等tracker的鼻祖。Cor
- 【Opencv】视频跟踪算法KCF
颢师傅
c++计算机视觉opencv音视频算法
目录KCF算法简介opencv实现代码c++opencv实现代码pythonKCF算法简介KCF(KernelizedCorrelationFilter)是一种基于核相关滤波器的目标跟踪算法。它通过学习目标的外观特征和使用核相关滤波器进行目标定位。KCF属于传统算法的单目标跟踪器。下面是对KCF跟踪算法的介绍:目标特征提取:KCF算法使用HOG(HistogramofOrientedGradien
- 传统计算机视觉
Debroon
#机器学习计算机视觉人工智能
传统计算机视觉计算机视觉难点图像分割基于主动轮廓的图像分割基于水平集的图像分割交互式图像分割基于模型的运动分割目标跟踪基于光流的点目标跟踪基于均值漂移的块目标跟踪基于粒子滤波的目标跟踪基于核相关滤波的目标跟踪目标检测一般目标检测识别之特征一般目标检测识别之分类器基于模型拟合的目标检测,i]k8+=<*I计算机视觉难点图像分割基于主动轮廓的图像分割基于水平集的图像分割交互式图像分割基于模型的运动分割
- 【学习笔记】视频检测方法调研
8倍
学习笔记汇总学习笔记
目录1引言2方法2.1视频目标跟踪2.1.1生成式模型方法2.1.2判别式模型方法2.1.2.1基于相关滤波跟踪2.1.2.2基于深度学习跟踪2.2视频异常检测2.2.1基于重构方法2.2.2基于预测方法2.2.3基于分类方法2.2.4基于回归方法2.3深度伪造人脸视频检测2.3.1基于RNN时空融合特征检测2.3.2基于卷积时空融合特征检测2.3.3基于像素位移时空融合特征检测2.4异常行为识别
- 射频通信接收机设计的主要结构
32RayZer
网络
【导读】在一个射频通信系统中,噪声,尤其是信噪比(SNR),是无线接收机中的一个基本问题。高噪声电平会限制系统的容量、覆盖范围,以及许多对系统运营商和终端用户都有重大影响的相关特性。射频通信接收机是射频电路中比较重要的一部分,射它能在频信号经天线接收后,经过相关滤波器和放大器,将射频信号进行一系列的频率变化,最终将信号调节成所需要的调制信号。在一个射频通信系统中,噪声,尤其是信噪比(SNR),是无
- Sallen-Key低通滤波器设计
32RayZer
社交电子
01Sallen-Key滤波器一、背景介绍近期由于需要测试所搭建的高阻抗信号源放大电路,其中包括有低通滤波器,所以研究了Sallen-Keytopology[1]相关滤波电路电路。如下是KennthA.Kuhn在2016给出的Sallen-KeyLow-PassFilter[2]设想步骤;2002年TI给出的AnalysisoftheSallen-KeyArchitecture[3]应用报告,给出
- 计算某一时间段内采样信号最小值、最大值、平均值(梯形图+SCL代码)
RXXW_Dor
经典控制工程应用算法PLC自动控制闭环控制
信号采样和平均值滤波相关内容请参看下面博客文章:S7-200SMARTPLC信号处理系列之滑动平均值滤波FB_西门子200smart写fb_RXXW_Dor的博客-CSDN博客PLC相关滤波算法,专栏有很多详细讲解这里不再赘述。滑动平均值滤波和算术平均值滤波专栏也有文章讲解,大家可以查看相应文章。关于SMARTPLC的指针应用可以查看下面这篇博客:SMARTPLC指针_RXXW_Dor的博客-CS
- 【深度学习知识点】常见目标跟踪算法及实现代码
CODER8R
深度学习计算机视觉算法深度学习目标跟踪计算机视觉目标检测
目标跟踪算法是人工智能领域中的重要研究方向之一。目标跟踪算法可以通过分析视频或图像中的物体运动,实现对物体的跟踪和识别。这种技术被广泛应用于视频监控、自动驾驶、无人机、物体检测、人脸识别等领域。目标跟踪算法可以分为基于传统机器学习的算法和基于深度学习的算法两种类型。本文将介绍基于传统机器学习的目标跟踪算法中的KCF算法。KCF算法是一种使用核函数的基于相关滤波器的目标跟踪算法。KCF算法的核心思想
- opencv 中如何对多个运动目标进行跟踪及统计?
爱吃饼干的熊猫
opencv计算机视觉人工智能
OpenCV中提供了多种多目标跟踪算法的实现,包括以下几种:1.KCF(KernelizedCorrelationFilters)跟踪算法:基于核相关滤波(CorrelationFilter)的目标跟踪算法,具有快速、准确、鲁棒的特点。2.MOSSE(MinimumOutputSumofSquaredError)跟踪算法:也是基于核相关滤波的目标跟踪算法,与KCF算法类似,但是计算速度更快。3.C
- C++实现三种滤波算法(过程详细)
星如雪_梭如月
c++开发语言pythonstm32算法
目录1写在前面2数据导入(c++)3滤波处理3.1处理前准备3.2均值滤波3.3中值滤波3.4一阶高斯滤波4导出数据5滤波效果展示5.1原数据成像5.2均值滤波5.3中值滤波5.4一阶高斯滤波1写在前面由于本人并未了解过代码优化相关知识,因此本文代码仅是能够实现滤波算法的功能,可能效率会低一点,效果验证通过Python语言。代码根据相关滤波算法定义而写。2数据导入(c++)数据为csv文件(三轴加
- (SPBACF)Robust Scalable Part-Based Visual Tracking for UAV with Background-Aware Correlation Filter
fjswcjswzy
目标跟踪计算机视觉目标跟踪相关滤波
文章目录1主要贡献2公式分析原文链接:https://ieeexplore.ieee.org/document/8665251原文代码:https://github.com/vision4robotics/SPBACF-Tracker1主要贡献该算法将要跟踪的对象最初划分成多个部分,并且不同的背景感知相关滤波器分别应用于这些划分的对象部分。提出了一种有效的具有结构比较和贝叶斯推断的从粗到细策略,用
- Deep Learning for Visual Tracking: AComprehensive Survey基于深度学习的视觉跟踪
嗯呢嗯呢
深度学习pythonpytorch深度学习
论文地址:https://arxiv.org/pdf/1912.00535.pdf摘要研究当前基于深度学习的可视化跟踪方法、基准数据集和评价指标。从9个关键方面总结了基于深度学习方法的基本特征、主要动机和贡献:网络架构、网络开发、视觉跟踪的网络训练、网络目标、网络输出、相关滤波器开发、鸟瞰跟踪、长期跟踪、在线跟踪。引言视觉跟踪:由目标初始状态估计未知的视觉目标的轨迹。应用自动驾驶汽车[1],自主机
- 相关滤波的视觉目标跟踪算法学习
qq_38269141
视觉计算机视觉目标跟踪算法
相关滤波的视觉目标跟踪算法学习内容1.视觉目标跟踪的难点:①训练数据有限。通用目标跟踪任务中,目标先验知识缺乏,仅有目标初始位置信息。②目标不确定性。跟踪过程中,随着目标尺寸、形状以及姿态等变化,其外观模型存在明显差异;多目标跟踪任务中,当目标进出视野或者完全遮挡时,目标数量存在不确定性。③场景复杂性。在实际场景中存在光照变化、背景杂乱、遮挡以及图像分辨率低等挑战2.视觉目标跟踪算法主体框架:①运
- 商汤科技 & 中科院自动化所:视觉跟踪之端到端的光流相关滤波 | CVPR 2018
PaperWeekly
作者丨朱政学校丨中科院自动化所博士生单位丨商汤科技研究方向丨视觉目标跟踪及其在机器人中的应用本文主要介绍我们发表于CVPR2018上的一篇文章:一种端到端的光流相关滤波跟踪算法。据我们所知,这是第一篇把Flow提取和tracking任务统一在一个网络里面的工作。■论文|End-to-endFlowCorrelationTrackingwithSpatial-temporalAttention■链接
- 2021-07-06 win10下Anaconda+VScode+pytorch环境搭建
weixin_42113506
vscodepytorchide
一、前言 说来惭愧,作为一个985研究生,居然到了研三才开始接触基于深度学习tracking,之前一直在弄相关滤波,玩是玩明白了,就是没弄出个名堂。眼瞅着要毕业了,这不上点深度学习,到时候又要被扣一个创新性不足的帽子。那就从现在开始,记录一下自己的学习历程吧。二、正文 师兄留下的机器是linux的,但自己习惯了win10,为了看代码方便,还是得在自己的电脑上搭个环境。用的是VScode+Pytor
- SiamRPN论文学习笔记(上)
forever compass
学习计算机视觉深度学习
SiamRPN论文学习笔记(上)引言SiamRPN的网络结构孪生子网络部分区域候选子网络部分RPN的诞生区域候选子网络训练阶段两阶段训练anchors尺寸设置分类分支中anchors正负例选取策略损失函数的选取将单目标检测策略应用到跟踪中引言在目标跟踪领域,孪生网络方法与相关滤波方法是最重要、应用最多的两类方法。在我的上一篇文章中,对孪生网络系列开山之作——SiamFC论文中的主要理论知识进行了简
- 面向无人机的视觉目标跟踪算法:综述与展望
米朵儿技术屋
数字化转型及信息化建设专栏算法目标跟踪人工智能
摘要:近年来,无人机因其小巧灵活、智能自主等特点被广泛应用于民用和军事等领域中,特别是搜索侦察过程中首要的目标跟踪任务。无人机视觉目标跟踪场景的复杂性和运动目标的多变性,使得目标特征提取及模型建立困难,对目标跟踪性能带来巨大的挑战。本文首先介绍了无人机视觉目标跟踪的研究现状,梳理了经典和最新的目标跟踪算法,特别是基于相关滤波的跟踪算法和基于深度学习的跟踪算法,并对比了不同算法的优缺点。其次,归纳了
- 目标跟踪综述
嗯呢嗯呢
深度学习pytorch深度学习神经网络
论文地址:https://arxiv.org/pdf/1912.00535.pdf摘要研究当前基于深度学习的可视化跟踪方法、基准数据集和评价指标。从9个关键方面总结了基于深度学习方法的基本特征、主要动机和贡献:网络架构、网络开发、视觉跟踪的网络训练、网络目标、网络输出、相关滤波器开发、鸟瞰跟踪、长期跟踪、在线跟踪。引言视觉跟踪:由目标初始状态估计未知的视觉目标的轨迹。应用自动驾驶汽车[1],自主机
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found