CGAN minist上的简单实现

CGAN的超简单实现,基于pytorch 0.4。

刚开始搭建了一个原始GAN网络,没多久就遇到模型崩溃的问题,生成的样本丰富性很少,所以索性直接改成CGAN ,整个原理还是很简单的,改起来很快,主要是参数调整真的让人头大。

GAN 训练了35个epoch的效果,几乎只生成3和5的样本。
CGAN minist上的简单实现_第1张图片

#CGAN训练效果,第8个epoch , 可以看到生成样本丰富性很高,而且质量很不错。
CGAN minist上的简单实现_第2张图片

代码
代码有点点乱,将就能用就行~
#CGANnets

import torch
import  torch.nn as nn
import torch.functional as F


#变成CGAN 在fc层嵌入 one-ho编码

class discriminator(nn.Module):
    def __init__(self):
        super(discriminator,self).__init__()

        self.conv1 = nn.Sequential(
            nn.Conv2d(1,32,5),
            nn.LeakyReLU(0.2,True),
            nn.MaxPool2d(2,stride = 2),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(32, 64, 5,padding=2),
            nn.LeakyReLU(0.2, True),
            nn.MaxPool2d(2, stride=2),
        )

        self.fc = nn.Sequential(
            nn.Linear(64*6*6+10,1024),
            nn.LeakyReLU(0.2,True),
            nn.Linear(1024,1),
            nn.Sigmoid()
        )

    def forward(self, x,labels):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.size(0),-1)
        x = torch.cat((x,labels),1)

        x = self.fc(x)
        return x

class generator(nn.Module):
    def __init__(self, input_size, num_feature):
        super(generator, self).__init__()
        self.fc = nn.Linear(input_size+10, num_feature)  # batch, 3136=1x56x56
        self.br = nn.Sequential(
            nn.BatchNorm2d(1),
            nn.ReLU(True)
        )

        self.downsample1 = nn.Sequential(
            nn.Conv2d(1,50,3,stride=1,padding=1),
            nn.BatchNorm2d(50),
            nn.ReLU(True)
        )

        self.downsample2 =  nn.Sequential(
            nn.Conv2d(50,25,3,stride=1,padding=1),
            nn.BatchNorm2d(25),
            nn.ReLU(True)
        )

        self.downsample3 = nn.Sequential(
            nn.Conv2d(25,1,2,stride = 2),
            nn.Tanh()
        )

    def forward(self,z,labels):
        '''

        :param x: (batchsize,100)的随机噪声
        :param label:  (batchsize,10) 的one-hot 标签编码
        :return:
        '''
        x = torch.cat((z,labels),1) #沿1维拼接
        x = self.fc(x)

        x = x.view(x.size(0),1,56,56)
        x = self.br(x)
        x = self.downsample1(x)
        x = self.downsample2(x)
        x = self.downsample3(x)

        return  x

##train.py

import torch
import  torch.nn as nn
import torch.functional as F
import os
from tensorboardX import SummaryWriter
import torchvision
from torchvision import datasets

from torchvision import transforms
import numpy as np
from torchvision.utils import save_image,make_grid
import cGANnets
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#超参数
batchsize = 128
z_dimension = 100
num = 25
epoch_num  = 100
scale = 1
criterion = nn.BCELoss()

writer = SummaryWriter()
def train_1(d_optimizer, g_optimizer, dataloader, epoch_num, G, D, criterion):
    '''
    #这个策略训练失败
    :param d_optimizer:
    :param g_optimizer:
    :param dataloader:
    :param epoch_num:
    :param G:
    :param D:
    :param criterion:
    :return:
    '''
    G.to(device)
    D.to(device)
    # g_optimizer.to(device)
    # d_optimizer.to(device)
    # criterion.to(device)
    step = 0
    for epoch in range(epoch_num):
        for i, (imgs, real_labels) in enumerate(dataloader):
            num_img = imgs.size(0)
            real_label = torch.Tensor(torch.ones(num_img)).to(device)
            fake_label = torch.Tensor(torch.zeros(num_img)).to(device)

            real_labels = generatelabels(batchsize, real_labels)  # 产生对应的one-hot编码标签
            real_labels.requires_grad = True

            imgs = imgs.to(device)
            num_img = imgs.size(0)

            real_out = D(imgs, real_labels)  # 输入真实图片得到结果
            real_scores = real_out
            d_loss_real = criterion(real_out, real_label)

            z = torch.Tensor(torch.randn(num_img, z_dimension)).to(device)

            fake_labels = generatelabels(batchsize)  # 生成编码标签
            fake_labels.requires_grad = True

            z.requires_grad = True
            fake_img = G(z, fake_labels)
            fake_out = D(fake_img, fake_labels)
            d_loss_fake = criterion(fake_out, fake_label)
            fake_scores = fake_out  #

            # 先更新判别器参数 然后再更新生成器参数
            d_loss = d_loss_real + d_loss_fake
            writer.add_scalar('d_loss', scale * d_loss, step)

            # 第一个epoch先充分训练判别器 所以每十次迭代才更新一次生成器
            if epoch == 0:
                d_optimizer.zero_grad()  # 梯度清零
                d_loss.backward()  # 计算梯度
                d_optimizer.step()  # 更新参数

                # 更新生成器
                if i % 10 == 0:
                    z = torch.Tensor(torch.randn(num_img, z_dimension)).to(device)
                    z.requires_grad = True
                    fake_img = G(z, fake_labels)
                    fake_out = D(fake_img, fake_labels)
                    g_loss = criterion(fake_out, real_label)
                    writer.add_scalar('g_loss', scale * g_loss, step)

                    g_optimizer.zero_grad()
                    g_loss.backward()
                    g_optimizer.step()

            else:  # 后面的迭代每隔25次迭代才更新一次判别器
                if i % num == 0:
                    d_optimizer.zero_grad()  # 梯度清零
                    d_loss.backward()  # 计算梯度
                    d_optimizer.step()  # 更新参数

                # 更新生成器
                z = torch.Tensor(torch.randn(num_img, z_dimension)).to(device)
                z.requires_grad = True
                fake_labels = generatelabels(batchsize)
                fake_labels.requires_grad = True

                fake_img = G(z, fake_labels)
                fake_out = D(fake_img, fake_labels)
                g_loss = criterion(fake_out, real_label)

                writer.add_scalar('g_loss', scale * g_loss, step)

                g_optimizer.zero_grad()
                g_loss.backward()
                g_optimizer.step()

            if (i + 1) % 50 == 0:
                print('Epoch[{}/{}],d_loss: {:.6f},g_loss: {:.6f}'
                      'D real: {:.6f}, D fake: {:.6f}'.format(
                    epoch, epoch_num, d_loss * scale, g_loss * scale,
                    real_scores.data.mean(), fake_scores.data.mean()
                )
                )

            step += 1

        if epoch == 0:
            real_images = to_img(imgs.cpu().data)

            save_image(real_images, './img/real_images.png', nrow=16, padding=0)
        fake_images = to_img(fake_img.cpu().data)

        grid = make_grid(fake_images, nrow=16, padding=0)
        writer.add_image('image', grid, epoch)

        save_image(fake_images, './img/fake_images-{}.png'.format(epoch + 1), nrow=16, padding=0)

    # 训练完成后保存模型文件
    torch.save(G.state_dict(), './generator.pth')
    torch.save(D.state_dict(), './discriminator.pth')


def train_2(d_optimizer, g_optimizer, dataloader, epoch_num, G, D, criterion):
    '''

    :param d_optimizer:
    :param g_optimizer:
    :param dataloader:
    :param epoch_num:
    :param G:
    :param D:
    :param criterion:
    :return:
    '''
    G.to(device)
    D.to(device)
    # g_optimizer.to(device)
    # d_optimizer.to(device)
    # criterion.to(device)
    step = 0
    for epoch in range(epoch_num):
        for i, (imgs, real_labels) in enumerate(dataloader):
            num_img = imgs.size(0)
            real_label = torch.Tensor(torch.ones(num_img)).to(device)
            fake_label = torch.Tensor(torch.zeros(num_img)).to(device)

            real_labels = generatelabels(batchsize, real_labels)  # 产生对应的one-hot编码标签
            real_labels.requires_grad = True

            imgs = imgs.to(device)
            num_img = imgs.size(0)

            real_out = D(imgs, real_labels)  # 输入真实图片得到结果
            real_scores = real_out
            d_loss_real = criterion(real_out, real_label)

            z = torch.Tensor(torch.randn(num_img, z_dimension)).to(device)

            fake_labels = generatelabels(batchsize)  # 生成编码标签
            fake_labels.requires_grad = True

            z.requires_grad = True
            fake_img = G(z, fake_labels)
            fake_out = D(fake_img, fake_labels)

            d_loss_fake = criterion(fake_out, fake_label)

            fake_scores = fake_out  #

            # 先更新判别器参数 然后再更新生成器参数
            d_loss = d_loss_real + d_loss_fake
            writer.add_scalar('d_loss', scale * d_loss, step)

            # 第一个epoch先充分训练判别器 所以每十次迭代才更新一次生成器
            # if epoch == 0:
            d_optimizer.zero_grad()  # 梯度清零
            d_loss.backward()  # 计算梯度
            d_optimizer.step()  # 更新参数

                # # 更新生成器
                # if i % 10 == 0:
            z = torch.Tensor(torch.randn(num_img, z_dimension)).to(device)
            z.requires_grad = True
            fake_img = G(z, fake_labels)
            fake_out = D(fake_img, fake_labels)
            g_loss = criterion(fake_out, real_label)
            writer.add_scalar('g_loss', scale * g_loss, step)

            g_optimizer.zero_grad()
            g_loss.backward()
            g_optimizer.step()

            # else:  # 后面的迭代每隔25次迭代才更新一次判别器
            #     if i % num == 0:
            #         d_optimizer.zero_grad()  # 梯度清零
            #         d_loss.backward()  # 计算梯度
            #         d_optimizer.step()  # 更新参数
            #
            #     # 更新生成器
            #     z = torch.Tensor(torch.randn(num_img, z_dimension)).to(device)
            #     z.requires_grad = True
            #     fake_labels = generatelabels(batchsize)
            #     fake_labels.requires_grad = True
            #
            #     fake_img = G(z, fake_labels)
            #     fake_out = D(fake_img, fake_labels)
            #     g_loss = criterion(fake_out, real_label)
            #
            #     writer.add_scalar('g_loss', scale * g_loss, step)
            #
            #     g_optimizer.zero_grad()
            #     g_loss.backward()
            #     g_optimizer.step()

            if (i + 1) % 50 == 0:
                print('Epoch[{}/{}],d_loss: {:.6f},g_loss: {:.6f}'
                      'D real: {:.6f}, D fake: {:.6f}'.format(
                    epoch, epoch_num, d_loss * scale, g_loss * scale,
                    real_scores.data.mean(), fake_scores.data.mean()
                )
                )

            step += 1

        if epoch == 0:
            real_images = to_img(imgs.cpu().data)

            save_image(real_images, './img/real_images.png', nrow=16, padding=0)
        fake_images = to_img(fake_img.cpu().data)

        grid = make_grid(fake_images, nrow=16, padding=0)
        writer.add_image('image', grid, epoch)

        save_image(fake_images, './img/fake_images-{}.png'.format(epoch + 1), nrow=16, padding=0)

    # 训练完成后保存模型文件
    torch.save(G.state_dict(), './generator.pth')
    torch.save(D.state_dict(), './discriminator.pth')

def generatelabels(batchsize,real_labels =None):
    x = torch.Tensor(torch.zeros(batchsize,10)).to(device)
    if real_labels is None: #生成随机标签
        y = [np.random.randint(0, 9) for i in range(batchsize)]
        x[np.arange(batchsize), y] = 1
    else:
        x[np.arange(batchsize),real_labels] = 1

    return x


def to_img(x):

    out = 0.5 * (x + 1)
    out = out.clamp(0, 1)
    out = out.view(-1, 1, 28, 28)

    return out

#main.py

import torch
import  torch.nn as nn
import torch.functional as F
import os
from tensorboardX import SummaryWriter
import torchvision
from torchvision import datasets
from torchvision import transforms
import numpy as np
from torchvision.utils import save_image,make_grid
import GANnet
from train import train_1,train_2


batchsize = 128
z_dimension = 100
num = 25
epoch_num  = 100
scale = 1
criterion = nn.BCELoss()

if __name__ =="__main__":

    if not os.path.exists('./img'):
        os.mkdir('./img')

    img_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean = (0.5,0.5,0.5),std = (0.5,0.5,0.5))
    ])

    minist = datasets.MNIST(root='./data/',train = True,transform = img_transform,download=True)

    dataloader = torch.utils.data.DataLoader(
        dataset = minist,batch_size = batchsize,shuffle =True,
        drop_last = True
    )

    G = GANnet.generator(z_dimension,3136)
    D = GANnet.discriminator()

    g_optimizer = torch.optim.Adam(G.parameters(),lr = 0.001)
    d_optimizer = torch.optim.Adam(D.parameters(),lr = 0.001)

    train_2(d_optimizer=d_optimizer,g_optimizer = g_optimizer,
          dataloader = dataloader, epoch_num = epoch_num,
          G=G,D=D,criterion = criterion)

参考博客
论文链接

你可能感兴趣的:(CGAN minist上的简单实现)