sparkstreaming官方文档笔记

1、sparksteaming 入门例子

    注:代码摘自spark官方文档  http://spark.apache.org/docs/latest/streaming-programming-guide.html#a-quick-example

import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingContext._ // not necessary since Spark 1.3

// Create a local StreamingContext with two working thread and batch interval of 1 second.
// The master requires 2 cores to prevent from a starvation scenario.

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))
// Create a DStream that will connect to hostname:port, like localhost:9999
val lines = ssc.socketTextStream("localhost", 9999)
// Split each line into words
val words = lines.flatMap(_.split(" "))
import org.apache.spark.streaming.StreamingContext._ // not necessary since Spark 1.3
// Count each word in each batch
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)

// Print the first ten elements of each RDD generated in this DStream to the console
wordCounts.print()
ssc.start()             // Start the computation
ssc.awaitTermination()  // Wait for the computation to terminate
然后,开启一个终端窗口,作为数据源输入: nc -lk 9999 

进入spark环境目录,执行workcount实时统计例子: ./bin/run-example org.apache.spark.examples.streaming.NetworkWordCount localhost 9999


2、DStream 数据源

1)、TCP scoket

  如上例子;

  通过StreamingContext API 读取文件数据源streamingContext.textFileStream(dataDirectory)

2)、Advanced Sources

  也可以从kafka、flume、kinesis(这个工作中还真没使用过)消费数据,这也是典型的sparkstreaming实时处理流程;

3)、Custom Sources

  根据业务场景定制数据源;


之前工作涉及浅显的spark技术,由于最近工作也不怎么用,工作之余,就重新学习一下,共勉!

你可能感兴趣的:(大数据,Spark)