第三章

处理机调度:多道程序环境下,动态的把处理机分配给就绪队列中的一个进程使之执行。
提高处理机的利用率、改善系统性能,很大程度上取决于处理机调度的性能。
处理机调度便成为OS设计的中心问题之一。分配的任务由处理机调度程序完成。

作业进入系统驻留在外存的后备队列上,再至调入内存运行完毕,可能要经历下述三级调度。
1.高级调度
2.中级调度
3.低级调度

高级调度
又称作业调度或长程调度(Long-Term Scheduling),接纳调度(Admission Scheduling)
主要在早期批处理阶段,处理在外存上的作业。
决定外存后备队列中的哪些作业调入内存;
为它们创建进程、分配必要的资源;
将新创建的进程排在就绪队列上,准备执行。

  • 管理的方面比较多。
    低级调度
    也称为进程调度、微观调度或短程调度(Short-Term Scheduling)
    决定内存就绪队列中的哪个进程获得处理机,进行分配工作。是最基本的一种调度,在三种基本OS中都有。
    中级调度
    又称交换调度或中程调度(Medium-Term Scheduling)
    引入目的:提高内存利用率和系统吞吐量。根据条件将一些进程调出或再调入内存。

作业调度决定的细节
在每次执行作业调度时,都须作出两个决定:
1.接纳多少作业——取决于多道程序度。应根据系统的规模和运行速度等情况综合考虑。
2.接纳哪些作业——取决于采用的调度算法。如先来先服务,短作业优先等

系统运行并不一定存在高级调度
批处理系统:作业进入系统后先驻留外存,故需要有作业调度。
分时系统:为及时响应,作业由终端直接送入内存,故不需作业调度。
实时系统中,通常也不需作业调度。

进程调度方式
1)非抢占方式(Non-preemptive Mode)
一旦处理机分配给某进程,该进程一直执行。决不允许其他进程抢占已分配运行进程的处理机。
2)抢占方式(Preemptive Mode)
允许调度程序根据某种原则,暂停某个正在执行的进程,将处理机重新分配给另一进程。

调度程序的任务职能:调度和分派。
(1) 记录系统中所有进程的有关情况
(2) 确定分配处理机的原则
(3) 分配处理机给进程
(4) 从进程收回处理机

三种调度的频率和复杂度
进程调度:运行频率最高,算法不能太复杂,以免占用太多的CPU时间。分时系统通常10~100ms便进行一次。
作业调度:一个作业运行完毕退出系统时即触发重新调度一个新作业入内存,周期较长,大约几分钟一次。因而也允许作业调度算法花费较多的时间。
中级调度:运行频率基本上介于上述两种调度之间。

调度队列模型
不论高级、中级或者低级调度,都涉及到进程队列,由此形成了三类调度队列模型。从这三种方式中体验调度的过程。
1.仅有进程调度的调度队列模型
2.具有高级和低级调度的调度队列模型
3.同时具有三级调度的调度队列模型

.选择调度方式和调度算法的若干准则
1)面向用户的准则
2)面向系统的准则

不同系统需求各有侧重
批处理系统
平均周转时间短
系统吞吐量高
处理机利用率好
分时系统
响应时间快
均衡
实时系统
截至时间的保证
可预测性

调度的实质就是一种资源分配。不同的系统和系统目标,通常采用不同的调度算法——适合自己的才是最好的。

1、先来先服务调度算法FCFS
按照作业提交,或进程变为就绪状态的先后次序分派CPU;
新作业只有当当前作业或进程执行完或阻塞才获得CPU运行
被唤醒的作业或进程不立即恢复执行,通常等到当前作业或进程出让CPU。 (所以,默认即是非抢占方式)
2. 短作业(进程)优先调度算法SJF/SPF
优点:
通过上表可见采用SJF/SPF算法,平均周转时间、平均带权周转时间都有明显改善。SJF/SPF调度算法能有效的降低作业的平均等待时间,提高系统吞吐量。
方式:
分抢占和非抢占两种方式,上例为简单的非抢占式。
SJF/SPF的不足:
1. 对短作业有利,但同时造成了对长作业的不利。
2.由于作业(进程)的长短含主观因素,不一定能真正做到短作业优先。
3.未考虑作业的紧迫程度,因而不能保证紧迫性作业(进程)的及时处理。
3. 高优先权优先调度算法HPF

  1. 分两种方式:
    非抢占式优先权算法
    抢占式优先权算法 关键点:新作业产生时
    2)优先权的类型
    静态优先权:创建进程时确定,整个运行期间保持不变。一般利用某一范围的一个整数来表示,又称为优先数。
    动态优先权:创建进程时赋予的优先权可随进程的推进或随其等待时间的增加而改变。
    3)高响应比优先调度算法HRRN
    短作业优先算法是一种比较好的算法(相当于根据作业长度设定的静态优先权算法),适用于短作业较多的批处理系统中,其主要不足是长作业的运行得不到保证。
    HRRN为每个作业引入动态优先权,使作业的优先级随着等待时间的增加而以速率a提高:

优先权 =(等待时间+要求服务时间)/要求服务时间
= 响应时间 / 要求服务时间
4. 基于时间片的轮转调度算法RR
分时系统新需求:及时响应用户的请求;采用基于时间片的轮转式进程调度算法。
早期分时系统采用的是简单的时间片轮转法,进入90年代后广泛采用多级反馈队列调度算法。
(1)时间片轮转算法
将系统中所有的就绪进程按照FCFS原则,排成一个队列。
每次调度时将CPU分派给队首进程,让其执行一个时间片。时间片的长度从几个ms到几百ms。
在一个时间片结束时,发生时钟中断。
调度程序据此暂停当前进程的执行,将其送到就绪队列的末尾,并通过上下文切换执行当前就绪的队首进程。
进程阻塞情况发生时,未用完时间片也要出让CPU
时间片长度的选择要与完成一个基本的交互过程所需的时间相当,保证一个基本的交互过程可在一个时间片内完成。
(2)多级反馈队列算法FB
1)设置多个就绪队列,各队列有不同的优先级,优先级从第一个队列依次降低。
2) 赋予各队列进程执行时间片大小不同, 优先权越高,时间片越短。
3)当一个新进程进入内存,引发的调度过程
准备调度:先将它放入第一个队列的末尾,按FCFS原则排队等待调度。
IF时间片内完成,便可准备撤离系统;
IF时间片内未能完成,调度程序便将该进程转入第二队列的末尾等待再次被调度执行。
当第一队列中的进程都执行完,系统再按FCFS原则调度第二队列。在第二队列的稍放长些的时间片内仍未完成,再依次将它放入第三队列。
依次降到第n队列后,在第n队列中便采取按时间片轮转的方式运行。

多级反馈队列调度算法的性能
多级反馈队列调度算法具有较好的性能,能较好的满足各种类型用户的需要。
终端型作业用户。大多属于较小的交互性作业,只要能使作业在第一队列的时间片内完成,便可令用户满意。
短批处理作业用户。周转时间仍然较短,至多在第二到三队列即可完成。
长批处理作业用户。将依次在1~n级队列中轮转执行,不必担心作业长期得不到处理。

实时系统
指系统能够在限定的响应时间内提供所需水平的服务。
指计算的正确性不仅取决于程序的逻辑正确性,也取决于结果产生的时间,如果系统的时间约束条件得不到满足,将会发生系统出错。

实时任务:具有明确时间约束的计算任务,有软/硬,随机/周期性之分。
硬实时任务:必须满足任务对截止时间的要求
软实时任务:联系着一个截止时间,但不严格,可偶尔错过,不会对系统造成大的影响。

实现实时调度的基本条件
1.提供必要的信息
为了实现实时调度,系统应向调度程序提供有关任务的下述信息:
就绪时间。该任务成为就绪状态的时间。
开始截止时间、完成截止时间。
处理时间。从开始执行到完成所需时间。
资源要求。任务执行时所需的一组资源。
优先级。根据任务性质赋予不同优先级
2.系统处理能力足够强
3.采用抢占式调度机制
4.具有快速切换机制
对外部中断的快速响应能力。
利用快速硬件中断机构,可在紧迫的外部事件请求中及时响应。
快速的任务分派能力。
使系统中的运行功能单位适当的小,提高切换速度。类如线程的思想

实时调度算法的分类
根据实时任务的性质
硬实时调度算法
软实时调度算法;

按调度方式
非抢占调度算法
抢占调度算法;

根据调度时间不同
静态调度算法
动态调度算法。

多处理机环境下
集中式调度
分布式调度

你可能感兴趣的:(第三章)