俄罗斯方块想必大家都玩过,现在题目给出了3种俄罗斯方块。
O形,I形,L形
以及5种操作,w选择,a左移一位,d右移以为,w下移一位,p什么都不做。然后又给出了方块出现的序列,要求按所给出的操作能消除多少行。
DRAW数组表示已 (x,y) 为左下角,能在图上画出的形状。
然后模拟每个每个方块,直到当前方块不能动位置,在二维数组中标记方块,然后接下来选择下一个方块继续操作。
my code
#include
#include
#include
using namespace std;
int SIZE[3] = {1, 2, 4};
int DRAW[3][4][4][2] = {
{
{ {0, 0}, {0, 1}, {1, 0}, {1, 1} }, {}, {}, {}
},
{
{ {0, 0}, {0, 1}, {0, 2}, {0, 3} },
{ {0, 0}, {1, 0}, {2, 0}, {3, 0} },
{}, {}
},
{
{ {0, 0}, {0, 1}, {1, 0}, {2, 0} },
{ {0, 0}, {0, 1}, {0, 2}, {1, 2} },
{ {0, 1}, {1, 1}, {2, 1}, {2, 0} },
{ {0, 0}, {1, 0}, {1, 1}, {1, 2} }
}
};
int n;
char oper[1005];
int G[15][15];
void clearGrid() {
memset(G, 0, sizeof(G));
for(int i = 0; i < 15; i++) {
G[0][i] = G[10][i] = -1;
G[i][0] = -1;
}
}
bool canMove(int x, int y, int dir[4][2]) {
for(int i = 0; i < 4; i++) {
int nx = x + dir[i][0];
int ny = y + dir[i][1];
if(G[nx][ny])
return false;
}
return true;
}
void drawGrid(int x, int y, int dir[4][2]) {
for(int i = 0; i < 4; i++) {
int nx = x + dir[i][0];
int ny = y + dir[i][1];
G[nx][ny] = 1;
}
}
int removeGrid() {
int ret = 0;
for(int j = 1; j <= 9; j++) { //row
bool full = true;
for(int i = 1; i <= 9; i++) { //col
if(!G[i][j]) {
full = false;
break;
}
}
if(full) {
for(int y = j; y < 12; y++) {
for(int x = 1; x <= 9; x++) {
G[x][y] = G[x][y+1];
}
}
ret++;
j--;
}
}
return ret;
}
int len, pos;
void play(int cur) {
int x = 4, y = 9, state = 0;
while(pos < len) {
if(oper[pos] == 'w') {
if(canMove(x, y, DRAW[cur][(state + 1) % SIZE[cur]]))
state = (state + 1) % SIZE[cur];
}else if(oper[pos] == 'a') {
if(canMove(x-1, y, DRAW[cur][state]))
x--;
}else if(oper[pos] == 'd') {
if(canMove(x+1, y, DRAW[cur][state]))
x++;
}else if(oper[pos] == 's') {
if(canMove(x, y-1, DRAW[cur][state]))
y--;
}
pos++;
if(canMove(x, y-1, DRAW[cur][state]))
y--;
else break;
}
drawGrid(x, y, DRAW[cur][state]);
}
int main() {
int T, cas = 1;
scanf("%d", &T);
while(T--) {
clearGrid();
scanf("%d%s", &n, oper);
len = strlen(oper), pos = 0;
int ans = 0, block;
for(int i = 0; i < n; i++) {
scanf("%d", &block);
play(block);
ans += removeGrid();
}
printf("Case %d: %d\n", cas++, ans);
}
return 0;
}