tensorflow使用卷积神经网络训练mnist数据集代码及结果

代码

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed May  2 09:06:42 2018

@author: xy
"""
import tensorflow as tf 
import tensorflow.examples.tutorials.mnist.input_data as input_data
#下载minist数据,创建mnist_data文件夹,one_hot编码
mnist = input_data.read_data_sets("mnist_data/", one_hot=True)    
x = tf.placeholder(tf.float32, [None, 784])                        
y_real = tf.placeholder(tf.float32, shape=[None, 10])
#初始化权重
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)#正态分布
  return tf.Variable(initial)
#初始化偏置
def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)#偏置初始化为0.1
  return tf.Variable(initial)
#构建卷积层
def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')#卷积步长为1,不足补0
#构建池化层
def max_pool(x):
    #大小2*2,步长为2,不足补0
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
#第一层
x_image = tf.reshape(x, [-1,28,28,1])         
W_conv1 = weight_variable([5, 5, 1, 32])      
b_conv1 = bias_variable([32])       
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)#卷积层
h_pool1 = max_pool(h_conv1)#池化层
#第二层
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)      
h_pool2 = max_pool(h_conv2)
#密集连接层
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])              
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)    
#dropout
keep_prob = tf.placeholder("float") 
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)                 
#输出层
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)   
#模型训练评估
cross_entropy = -tf.reduce_sum(y_real*tf.log(y_predict))    
train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy)    
correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_real,1))    
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))                
sess=tf.InteractiveSession()                          
sess.run(tf.global_variables_initializer())
for i in range(20001):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:#训练100次
    train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_real: batch[1], keep_prob: 1.0})
    print('step %d,training accuracy %g'%(i,train_accuracy))
    train_step.run(feed_dict={x: batch[0], y_real: batch[1], keep_prob: 0.5})

test_accuracy=accuracy.eval(feed_dict={x: mnist.test.images, y_real: mnist.test.labels, keep_prob: 1.0})
print("test accuracy",test_accuracy)
运行结果

tensorflow使用卷积神经网络训练mnist数据集代码及结果_第1张图片
每次运行结果不一样~

你可能感兴趣的:(深度学习)