caffe中的softmaxWithLoss其实是:
softmaxWithLoss = Multinomial Logistic Loss Layer + Softmax Layer
其核心公式为:
其中,其中y^为标签值,k为输入图像标签所对应的的神经元。m为输出的最大值,主要是考虑数值稳定性。
反向传播时:
对输入的zj进行求导得:
首先在Caffe中使用如下:
1 layer {
2 name: "loss"
3 type: "SoftmaxWithLoss"
4 bottom: "fc8"
5 bottom: "label"
6 top: "loss"
7 }
caffe中softmaxloss 层的参数如下:
// Message that stores parameters shared by loss layers
message LossParameter {
// If specified, ignore instances with the given label.
//忽略那些label
optional int32 ignore_label = 1;
// How to normalize the loss for loss layers that aggregate across batches,
// spatial dimensions, or other dimensions. Currently only implemented in
// SoftmaxWithLoss and SigmoidCrossEntropyLoss layers.
enum NormalizationMode {
// Divide by the number of examples in the batch times spatial dimensions.
// Outputs that receive the ignore label will NOT be ignored in computing
// the normalization factor.
//一次前向计算的loss除以所有的label数
FULL = 0;
// Divide by the total number of output locations that do not take the
// ignore_label. If ignore_label is not set, this behaves like FULL.
//一次前向计算的loss除以所有的可用的label数
VALID = 1;
// Divide by the batch size.
//除以batchsize大小,默认为batchsize大小。
BATCH_SIZE = 2;
// Do not normalize the loss.
NONE = 3;
}
// For historical reasons, the default normalization for
// SigmoidCrossEntropyLoss is BATCH_SIZE and *not* VALID.
optional NormalizationMode normalization = 3 [default = VALID];
// Deprecated. Ignored if normalization is specified. If normalization
// is not specified, then setting this to false will be equivalent to
// normalization = BATCH_SIZE to be consistent with previous behavior.
//如果normalize==false,则normalization=BATCH_SIZE
//如果normalize==true,则normalization=Valid
optional bool normalize = 2;
}
首先来看一下softmaxwithloss的头文件:
#ifndef CAFFE_SOFTMAX_WITH_LOSS_LAYER_HPP_
#define CAFFE_SOFTMAX_WITH_LOSS_LAYER_HPP_
#include
#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/layers/loss_layer.hpp"
#include "caffe/layers/softmax_layer.hpp"
namespace caffe {
/**
* @brief Computes the multinomial logistic loss for a one-of-many
* classification task, passing real-valued predictions through a
* softmax to get a probability distribution over classes.
*
* This layer should be preferred over separate
* SoftmaxLayer + MultinomialLogisticLossLayer
* as its gradient computation is more numerically stable.
* At test time, this layer can be replaced simply by a SoftmaxLayer.
*
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the predictions @f$ x @f$, a Blob with values in
* @f$ [-\infty, +\infty] @f$ indicating the predicted score for each of
* the @f$ K = CHW @f$ classes. This layer maps these scores to a
* probability distribution over classes using the softmax function
* @f$ \hat{p}_{nk} = \exp(x_{nk}) /
* \left[\sum_{k'} \exp(x_{nk'})\right] @f$ (see SoftmaxLayer).
* -# @f$ (N \times 1 \times 1 \times 1) @f$
* the labels @f$ l @f$, an integer-valued Blob with values
* @f$ l_n \in [0, 1, 2, ..., K - 1] @f$
* indicating the correct class label among the @f$ K @f$ classes
* @param top output Blob vector (length 1)
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* the computed cross-entropy classification loss: @f$ E =
* \frac{-1}{N} \sum\limits_{n=1}^N \log(\hat{p}_{n,l_n})
* @f$, for softmax output class probabilites @f$ \hat{p} @f$
*/
template <typename Dtype>
class SoftmaxWithLossLayer : public LossLayer {
public:
/**
* @param param provides LossParameter loss_param, with options:
* - ignore_label (optional)
* Specify a label value that should be ignored when computing the loss.
* - normalize (optional, default true)
* If true, the loss is normalized by the number of (nonignored) labels
* present; otherwise the loss is simply summed over spatial locations.
*/
explicit SoftmaxWithLossLayer(const LayerParameter& param)
: LossLayer(param) {}
virtual void LayerSetUp(const vector *>& bottom,
const vector *>& top);
virtual void Reshape(const vector *>& bottom,
const vector *>& top);
virtual inline const char* type() const { return "SoftmaxWithLoss"; }
virtual inline int ExactNumBottomBlobs() const { return -1; }
virtual inline int MinBottomBlobs() const { return 2; }
virtual inline int MaxBottomBlobs() const { return 3; }
virtual inline int ExactNumTopBlobs() const { return -1; }
virtual inline int MinTopBlobs() const { return 1; }
virtual inline int MaxTopBlobs() const { return 2; }
protected:
virtual void Forward_cpu(const vector *>& bottom,
const vector *>& top);
virtual void Forward_gpu(const vector *>& bottom,
const vector *>& top);
/**
* @brief Computes the softmax loss error gradient w.r.t. the predictions.
*
* Gradients cannot be computed with respect to the label inputs (bottom[1]),
* so this method ignores bottom[1] and requires !propagate_down[1], crashing
* if propagate_down[1] is set.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* -# @f$ (1 \times 1 \times 1 \times 1) @f$
* This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$,
* as @f$ \lambda @f$ is the coefficient of this layer's output
* @f$\ell_i@f$ in the overall Net loss
* @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence
* @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$.
* (*Assuming that this top Blob is not used as a bottom (input) by any
* other layer of the Net.)
* @param propagate_down see Layer::Backward.
* propagate_down[1] must be false as we can't compute gradients with
* respect to the labels.
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the predictions @f$ x @f$; Backward computes diff
* @f$ \frac{\partial E}{\partial x} @f$
* -# @f$ (N \times 1 \times 1 \times 1) @f$
* the labels -- ignored as we can't compute their error gradients
*/
virtual void Backward_cpu(const vector *>& top,
const vector<bool>& propagate_down, const vector *>& bottom);
virtual void Backward_gpu(const vector *>& top,
const vector<bool>& propagate_down, const vector *>& bottom);
/// Read the normalization mode parameter and compute the normalizer based
/// on the blob size. If normalization_mode is VALID, the count of valid
/// outputs will be read from valid_count, unless it is -1 in which case
/// all outputs are assumed to be valid.
virtual Dtype get_normalizer(
LossParameter_NormalizationMode normalization_mode, Dtype valid_count);
/// The internal SoftmaxLayer used to map predictions to a distribution.
//声明softmax layer
shared_ptr > softmax_layer_;
/// prob stores the output probability predictions from the SoftmaxLayer.
//存储经过softmax layer输出的概率
Blob prob_;
/// bottom vector holder used in call to the underlying
//softmax层前向函数的bottom
SoftmaxLayer::Forward
vector *> softmax_bottom_vec_;
/// top vector holder used in call to the underlying SoftmaxLayer::Forward
//softmax层前向函数的top
vector *> softmax_top_vec_;
// Whether to ignore instances with a certain label.
//是否需要忽略掉label
bool has_ignore_label_;
/// The label indicating that an instance should be ignored.
int ignore_label_;
bool has_hard_ratio_;
float hard_ratio_;
bool has_hard_mining_label_;
int hard_mining_label_;
bool has_class_weight_;
Blob class_weight_;
Blob counts_;
Blob loss_;
/// How to normalize the output loss.
//归一化loss类型
LossParameter_NormalizationMode normalization_;
bool has_cutting_point_;
Dtype cutting_point_;
std::string normalize_type_;
int softmax_axis_, outer_num_, inner_num_;
};
} // namespace caffe
#endif // CAFFE_SOFTMAX_WITH_LOSS_LAYER_HPP_
具体函数实现
#include
#include
#include
#include "caffe/layers/softmax_loss_layer.hpp"
#include "caffe/util/math_functions.hpp"
namespace caffe {
template <typename Dtype>
void SoftmaxWithLossLayer::LayerSetUp(
const vector *>& bottom, const vector *>& top) {
LossLayer::LayerSetUp(bottom, top);
normalize_type_ =
this->layer_param_.softmax_param().normalize_type();
//归一化为softmax
if (normalize_type_ == "Softmax") {
LayerParameter softmax_param(this->layer_param_);
softmax_param.set_type("Softmax");
softmax_layer_ = LayerRegistry::CreateLayer(softmax_param);
softmax_bottom_vec_.clear();
softmax_bottom_vec_.push_back(bottom[0]);
softmax_top_vec_.clear();
softmax_top_vec_.push_back(&prob_);
softmax_layer_->SetUp(softmax_bottom_vec_, softmax_top_vec_);
}
else if(normalize_type_ == "L2" || normalize_type_ == "L1") {
LayerParameter normalize_param(this->layer_param_);
normalize_param.set_type("Normalize");
softmax_layer_ = LayerRegistry::CreateLayer(normalize_param);
softmax_bottom_vec_.clear();
softmax_bottom_vec_.push_back(bottom[0]);
softmax_top_vec_.clear();
softmax_top_vec_.push_back(&prob_);
softmax_layer_->SetUp(softmax_bottom_vec_, softmax_top_vec_);
}
else {
NOT_IMPLEMENTED;
}
has_ignore_label_ =
this->layer_param_.loss_param().has_ignore_label();
if (has_ignore_label_) {
ignore_label_ = this->layer_param_.loss_param().ignore_label();
}
has_hard_ratio_ =
this->layer_param_.softmax_param().has_hard_ratio();
if (has_hard_ratio_) {
hard_ratio_ = this->layer_param_.softmax_param().hard_ratio();
CHECK_GE(hard_ratio_, 0);
CHECK_LE(hard_ratio_, 1);
}
has_cutting_point_ =
this->layer_param_.softmax_param().has_cutting_point();
if (has_cutting_point_) {
cutting_point_ = this->layer_param_.softmax_param().cutting_point();
CHECK_GE(cutting_point_, 0);
CHECK_LE(cutting_point_, 1);
}
has_hard_mining_label_ = this->layer_param_.softmax_param().has_hard_mining_label();
if (has_hard_mining_label_) {
hard_mining_label_ = this->layer_param_.softmax_param().hard_mining_label();
}
has_class_weight_ = (this->layer_param_.softmax_param().class_weight_size() != 0);
softmax_axis_ =
bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis());
if (has_class_weight_) {
class_weight_.Reshape({ bottom[0]->shape(softmax_axis_) });
CHECK_EQ(this->layer_param_.softmax_param().class_weight().size(), bottom[0]->shape(softmax_axis_));
for (int i = 0; i < bottom[0]->shape(softmax_axis_); i++) {
class_weight_.mutable_cpu_data()[i] = (Dtype)this->layer_param_.softmax_param().class_weight(i);
}
}
else {
if (bottom.size() == 3) {
class_weight_.Reshape({ bottom[0]->shape(softmax_axis_) });
for (int i = 0; i < bottom[0]->shape(softmax_axis_); i++) {
class_weight_.mutable_cpu_data()[i] = (Dtype)1.0;
}
}
}
if (!this->layer_param_.loss_param().has_normalization() &&
this->layer_param_.loss_param().has_normalize()) {
normalization_ = this->layer_param_.loss_param().normalize() ?
LossParameter_NormalizationMode_VALID :
LossParameter_NormalizationMode_BATCH_SIZE;
} else {
normalization_ = this->layer_param_.loss_param().normalization();
}
}
template <typename Dtype>
void SoftmaxWithLossLayer::Reshape(
const vector *>& bottom, const vector *>& top) {
LossLayer::Reshape(bottom, top);
softmax_layer_->Reshape(softmax_bottom_vec_, softmax_top_vec_);
softmax_axis_ =
bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis());
outer_num_ = bottom[0]->count(0, softmax_axis_);
inner_num_ = bottom[0]->count(softmax_axis_ + 1);
counts_.Reshape({ outer_num_, inner_num_ });
loss_.Reshape({ outer_num_, inner_num_ });
CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count())
<< "Number of labels must match number of predictions; "
<< "e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), "
<< "label count (number of labels) must be N*H*W, "
<< "with integer values in {0, 1, ..., C-1}.";
if (bottom.size() == 3) {
CHECK_EQ(outer_num_ * inner_num_, bottom[2]->count())
<< "Number of loss weights must match number of label.";
}
if (top.size() >= 2) {
// softmax output
top[1]->ReshapeLike(*bottom[0]);
}
if (has_class_weight_) {
CHECK_EQ(class_weight_.count(), bottom[0]->shape(1));
}
}
template <typename Dtype>
Dtype SoftmaxWithLossLayer::get_normalizer(
LossParameter_NormalizationMode normalization_mode, Dtype valid_count) {
Dtype normalizer;
switch (normalization_mode) {
case LossParameter_NormalizationMode_FULL:
normalizer = Dtype(outer_num_ * inner_num_);
break;
case LossParameter_NormalizationMode_VALID:
if (valid_count == -1) {
normalizer = Dtype(outer_num_ * inner_num_);
} else {
normalizer = valid_count;
}
break;
case LossParameter_NormalizationMode_BATCH_SIZE:
normalizer = Dtype(outer_num_);
break;
case LossParameter_NormalizationMode_NONE:
normalizer = Dtype(1);
break;
default:
LOG(FATAL) << "Unknown normalization mode: "
<< LossParameter_NormalizationMode_Name(normalization_mode);
}
// Some users will have no labels for some examples in order to 'turn off' a
// particular loss in a multi-task setup. The max prevents NaNs in that case.
return std::max(Dtype(1.0), normalizer);
}
//前向中主要利用softmax层输出每一个样本的对应的所有类别概率。如输入一只狗,则输出狗的概率,猫的概率,猴的概率。[0.8,0.1,0.1]
template <typename Dtype>
void SoftmaxWithLossLayer::Forward_cpu(
const vector *>& bottom, const vector *>& top) {
// The forward pass computes the softmax prob values.
softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);
const Dtype* prob_data = prob_.cpu_data();
const Dtype* label = bottom[1]->cpu_data();
int dim = prob_.count() / outer_num_;
Dtype count = 0;
Dtype loss = 0;
if (bottom.size() == 2) {
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; j++) {
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
if (has_ignore_label_ && label_value == ignore_label_) {
continue;
}
DCHECK_GE(label_value, 0);
DCHECK_LT(label_value, prob_.shape(softmax_axis_));
loss -= log(std::max(prob_data[i * dim + label_value * inner_num_ + j],
Dtype(FLT_MIN)));
count += 1;
}
}
}
else if(bottom.size() == 3) {
const Dtype* weights = bottom[2]->cpu_data();
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; j++) {
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
const Dtype weight_value = weights[i * inner_num_ + j] * (has_class_weight_? class_weight_.cpu_data()[label_value] : 1.0);
if (weight_value == 0) continue;
if (has_ignore_label_ && label_value == ignore_label_) {
continue;
}
DCHECK_GE(label_value, 0);
DCHECK_LT(label_value, prob_.shape(softmax_axis_));
loss -= weight_value * log(std::max(prob_data[i * dim + label_value * inner_num_ + j],
Dtype(FLT_MIN)));
count += weight_value;
}
}
}
top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_, count);
if (top.size() == 2) {
top[1]->ShareData(prob_);
}
}
template <typename Dtype>
void SoftmaxWithLossLayer::Backward_cpu(const vector *>& top,
const vector<bool>& propagate_down, const vector *>& bottom) {
if (propagate_down[1]) {
LOG(FATAL) << this->type()
<< " Layer cannot backpropagate to label inputs.";
}
if (propagate_down[0]) {
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
const Dtype* prob_data = prob_.cpu_data();
caffe_copy(prob_.count(), prob_data, bottom_diff);
const Dtype* label = bottom[1]->cpu_data();
int dim = prob_.count() / outer_num_;
Dtype count = 0;
if (bottom.size() == 2) {
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; ++j) {
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
if (has_ignore_label_ && label_value == ignore_label_) {
for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) {
bottom_diff[i * dim + c * inner_num_ + j] = 0;
}
}
else {
//反向求导的公式的实现
bottom_diff[i * dim + label_value * inner_num_ + j] -= 1;
count += 1;
}
}
}
}
else if (bottom.size() == 3) {
const Dtype* weights = bottom[2]->cpu_data();
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; ++j) {
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
const Dtype weight_value = weights[i * inner_num_ + j];
if (has_ignore_label_ && label_value == ignore_label_) {
for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) {
bottom_diff[i * dim + c * inner_num_ + j] = 0;
}
}
else {
bottom_diff[i * dim + label_value * inner_num_ + j] -= 1;
for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) {
bottom_diff[i * dim + c * inner_num_ + j] *= weight_value * (has_class_weight_ ? class_weight_.cpu_data()[label_value] : 1.0);
}
if(weight_value != 0) count += weight_value;
}
}
}
}
// Scale gradient
//由归一化手段决定梯度的放缩
Dtype loss_weight = top[0]->cpu_diff()[0] /
get_normalizer(normalization_, count);
caffe_scal(prob_.count(), loss_weight, bottom_diff);
}
}
#ifdef CPU_ONLY
STUB_GPU(SoftmaxWithLossLayer);
#endif
INSTANTIATE_CLASS(SoftmaxWithLossLayer);
REGISTER_LAYER_CLASS(SoftmaxWithLoss);
} // namespace caffe