首先来看看BasicRNNCell的源码
class BasicRNNCell(RNNCell):
"""The most basic RNN cell."""
def __init__(self, num_units, input_size=None, activation=tanh, reuse=None):
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._activation = activation
self._reuse = reuse
@property
def state_size(self):
return self._num_units
@property
def output_size(self):
return self._num_units
def __call__(self, inputs, state, scope=None):
"""Most basic RNN: output = new_state = act(W * input + U * state + B)."""
with _checked_scope(self, scope or "basic_rnn_cell", reuse=self._reuse):
output = self._activation(
_linear([inputs, state], self._num_units, True))
return output, output
BasicRNNCell是最基本的RNN cell单元。
输入参数:num_units:RNN层神经元的个数
input_size(该参数已被弃用)
activation: 内部状态之间的激活函数
reuse: Python布尔值, 描述是否重用现有作用域中的变量
从源码中可以看出通过BasicRnnCell定义的实例对象Cell,其中两个属性Cell.state_size和Cell.output_size返回的都是num_units. 通过_call_将实例A变成一个可调用的对象,当传入输入input和状态state后,根据公式output = new_state = act(W * input + U * state + B) 可以得到相应的输出并返回,
源码如下
class BasicLSTMCell(RNNCell):
"""Basic LSTM recurrent network cell.
The implementation is based on: http://arxiv.org/abs/1409.2329.
We add forget_bias (default: 1) to the biases of the forget gate in order to
reduce the scale of forgetting in the beginning of the training.
It does not allow cell clipping, a projection layer, and does not
use peep-hole connections: it is the basic baseline.
For advanced models, please use the full LSTMCell that follows.
"""
def __init__(self, num_units, forget_bias=1.0, input_size=None,
state_is_tuple=True, activation=tanh, reuse=None):
"""Initialize the basic LSTM cell.
Args:
num_units: int, The number of units in the LSTM cell.
forget_bias: float, The bias added to forget gates (see above).
input_size: Deprecated and unused.
state_is_tuple: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. If False, they are concatenated
along the column axis. The latter behavior will soon be deprecated.
activation: Activation function of the inner states.
reuse: (optional) Python boolean describing whether to reuse variables
in an existing scope. If not `True`, and the existing scope already has
the given variables, an error is raised.
"""
if not state_is_tuple:
logging.warn("%s: Using a concatenated state is slower and will soon be "
"deprecated. Use state_is_tuple=True.", self)
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation
self._reuse = reuse
@property
def state_size(self):
return (LSTMStateTuple(self._num_units, self._num_units)
if self._state_is_tuple else 2 * self._num_units)
@property
def output_size(self):
return self._num_units
def __call__(self, inputs, state, scope=None):
"""Long short-term memory cell (LSTM)."""
with _checked_scope(self, scope or "basic_lstm_cell", reuse=self._reuse):
# Parameters of gates are concatenated into one multiply for efficiency.
if self._state_is_tuple:
c, h = state
else:
c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1)
concat = _linear([inputs, h], 4 * self._num_units, True)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1)
new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) *
self._activation(j))
new_h = self._activation(new_c) * sigmoid(o)
if self._state_is_tuple:
new_state = LSTMStateTuple(new_c, new_h)
else:
new_state = array_ops.concat([new_c, new_h], 1)
return new_h, new_state
class LSTMStateTuple(_LSTMStateTuple):
"""Tuple used by LSTM Cells for `state_size`, `zero_state`, and output state.
Stores two elements: `(c, h)`, in that order.
Only used when `state_is_tuple=True`.
"""
__slots__ = ()
@property
def dtype(self):
(c, h) = self
if not c.dtype == h.dtype:
raise TypeError("Inconsistent internal state: %s vs %s" %
(str(c.dtype), str(h.dtype)))
return c.dtype
BasicLSTMCell类是最基本的LSTM循环神经网络单元。
输入参数和BasicRNNCell差不多
num_units: LSTM cell层中的单元数
forget_bias: forget gates中的偏置
state_is_tuple: 还是设置为True吧, 返回 (c_state , m_state)的二元组
activation: 状态之间转移的激活函数
reuse: Python布尔值, 描述是否重用现有作用域中的变量