tf.contrib.rnn.BasicLSTMCell, tf.contrib.rnn.MultiRNNCell深度解析

tf.contrib.rnn.BasicRnnCell

首先来看看BasicRNNCell的源码

class BasicRNNCell(RNNCell):
  """The most basic RNN cell."""

  def __init__(self, num_units, input_size=None, activation=tanh, reuse=None):
    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)
    self._num_units = num_units
    self._activation = activation
    self._reuse = reuse

  @property
  def state_size(self):
    return self._num_units

  @property
  def output_size(self):
    return self._num_units

  def __call__(self, inputs, state, scope=None):
    """Most basic RNN: output = new_state = act(W * input + U * state + B)."""
    with _checked_scope(self, scope or "basic_rnn_cell", reuse=self._reuse):
      output = self._activation(
          _linear([inputs, state], self._num_units, True))
    return output, output

BasicRNNCell是最基本的RNN cell单元。
输入参数:num_units:RNN层神经元的个数
input_size(该参数已被弃用)
activation: 内部状态之间的激活函数
reuse: Python布尔值, 描述是否重用现有作用域中的变量

从源码中可以看出通过BasicRnnCell定义的实例对象Cell,其中两个属性Cell.state_size和Cell.output_size返回的都是num_units. 通过_call_将实例A变成一个可调用的对象,当传入输入input和状态state后,根据公式output = new_state = act(W * input + U * state + B) 可以得到相应的输出并返回,

tf.contrib.rnn.BasicLSTMCell

源码如下

class BasicLSTMCell(RNNCell):
  """Basic LSTM recurrent network cell.
  The implementation is based on: http://arxiv.org/abs/1409.2329.
  We add forget_bias (default: 1) to the biases of the forget gate in order to
  reduce the scale of forgetting in the beginning of the training.
  It does not allow cell clipping, a projection layer, and does not
  use peep-hole connections: it is the basic baseline.
  For advanced models, please use the full LSTMCell that follows.
  """

  def __init__(self, num_units, forget_bias=1.0, input_size=None,
               state_is_tuple=True, activation=tanh, reuse=None):
    """Initialize the basic LSTM cell.
    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
      input_size: Deprecated and unused.
      state_is_tuple: If True, accepted and returned states are 2-tuples of
        the `c_state` and `m_state`.  If False, they are concatenated
        along the column axis.  The latter behavior will soon be deprecated.
      activation: Activation function of the inner states.
      reuse: (optional) Python boolean describing whether to reuse variables
        in an existing scope.  If not `True`, and the existing scope already has
        the given variables, an error is raised.
    """
    if not state_is_tuple:
      logging.warn("%s: Using a concatenated state is slower and will soon be "
                   "deprecated.  Use state_is_tuple=True.", self)
    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)
    self._num_units = num_units
    self._forget_bias = forget_bias
    self._state_is_tuple = state_is_tuple
    self._activation = activation
    self._reuse = reuse

  @property
  def state_size(self):
    return (LSTMStateTuple(self._num_units, self._num_units)
            if self._state_is_tuple else 2 * self._num_units)

  @property
  def output_size(self):
    return self._num_units

  def __call__(self, inputs, state, scope=None):
    """Long short-term memory cell (LSTM)."""
    with _checked_scope(self, scope or "basic_lstm_cell", reuse=self._reuse):
      # Parameters of gates are concatenated into one multiply for efficiency.
      if self._state_is_tuple:
        c, h = state
      else:
        c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1)
      concat = _linear([inputs, h], 4 * self._num_units, True)

      # i = input_gate, j = new_input, f = forget_gate, o = output_gate
      i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1)

      new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) *
               self._activation(j))
      new_h = self._activation(new_c) * sigmoid(o)

      if self._state_is_tuple:
        new_state = LSTMStateTuple(new_c, new_h)
      else:
        new_state = array_ops.concat([new_c, new_h], 1)
      return new_h, new_state

关于LSTMStateTuple的源码如下

class LSTMStateTuple(_LSTMStateTuple):
  """Tuple used by LSTM Cells for `state_size`, `zero_state`, and output state.
  Stores two elements: `(c, h)`, in that order.
  Only used when `state_is_tuple=True`.
  """
  __slots__ = ()

  @property
  def dtype(self):
    (c, h) = self
    if not c.dtype == h.dtype:
      raise TypeError("Inconsistent internal state: %s vs %s" %
                      (str(c.dtype), str(h.dtype)))
    return c.dtype

BasicLSTMCell类是最基本的LSTM循环神经网络单元。
输入参数和BasicRNNCell差不多
num_units: LSTM cell层中的单元数
forget_bias: forget gates中的偏置
state_is_tuple: 还是设置为True吧, 返回 (c_state , m_state)的二元组
activation: 状态之间转移的激活函数
reuse: Python布尔值, 描述是否重用现有作用域中的变量

  • state_size属性:如果state_is_tuple为true的话,返回的是二元状态元祖。
  • output_size属性:返回LSTM中的num_units, 也就是LSTM Cell中的单元数,在初始化是输入的num_units参数
  • _call_()将类实例转化为一个可调用的对象,传入输入input和状态state,根据LSTM的计算公式, 返回new_h, 和新的状态new_state. 其中new_state = (new_c, new_h)关于具体的理论详细见这篇论文https://arxiv.org/pdf/1409.2329.pdf

你可能感兴趣的:(深度学习)