C. Maximum Subrectangle
time limit per test
2 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output
You are given two arrays aa and bb of positive integers, with length nn and mm respectively.
Let cc be an n×mn×m matrix, where ci,j=ai⋅bjci,j=ai⋅bj.
You need to find a subrectangle of the matrix cc such that the sum of its elements is at most xx, and its area (the total number of elements) is the largest possible.
Formally, you need to find the largest number ss such that it is possible to choose integers x1,x2,y1,y2x1,x2,y1,y2 subject to 1≤x1≤x2≤n1≤x1≤x2≤n, 1≤y1≤y2≤m1≤y1≤y2≤m, (x2−x1+1)×(y2−y1+1)=s(x2−x1+1)×(y2−y1+1)=s, andx2∑i=x1y2∑j=y1ci,j≤x.∑i=x1x2∑j=y1y2ci,j≤x.
Input
The first line contains two integers nn and mm (1≤n,m≤20001≤n,m≤2000).
The second line contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤20001≤ai≤2000).
The third line contains mm integers b1,b2,…,bmb1,b2,…,bm (1≤bi≤20001≤bi≤2000).
The fourth line contains a single integer xx (1≤x≤2⋅1091≤x≤2⋅109).
Output
If it is possible to choose four integers x1,x2,y1,y2x1,x2,y1,y2 such that 1≤x1≤x2≤n1≤x1≤x2≤n, 1≤y1≤y2≤m1≤y1≤y2≤m, and ∑x2i=x1∑y2j=y1ci,j≤x∑i=x1x2∑j=y1y2ci,j≤x, output the largest value of (x2−x1+1)×(y2−y1+1)(x2−x1+1)×(y2−y1+1) among all such quadruplets, otherwise output 00.
Examples
input
Copy
3 3 1 2 3 1 2 3 9
output
Copy
4
input
Copy
5 1 5 4 2 4 5 2 5
output
Copy
1
Note
Matrix from the first sample and the chosen subrectangle (of blue color):
Matrix from the second sample and the chosen subrectangle (of blue color):
点我传送
给出两个序列,他们能组成一个矩阵,然后求子矩阵的和小于k的,最大的子矩阵的面积。
可以处理出数列a和数列b中连续序列的最小和,用suma[ ]和sumb[ ]来记录。
比如suma[ x ] = y表示a序列中连续的x个数字能组成的最小的和为y。
暴力枚举一下两个序列的段数,更新答案。
#include
#include
#include
#include