- 【数论 排序 滑动窗口】1040. 移动石子直到连续 II|2455
软件架构师何志丹
#困难算法题c++力扣算法排序滑动窗口数论石子
本文涉及知识点排序质数、最大公约数、菲蜀定理C++算法:滑动窗口总结LeetCode1040.移动石子直到连续II在一个长度无限的数轴上,第i颗石子的位置为stones[i]。如果一颗石子的位置最小/最大,那么该石子被称作端点石子。每个回合,你可以将一颗端点石子拿起并移动到一个未占用的位置,使得该石子不再是一颗端点石子。值得注意的是,如果石子像stones=[1,2,5]这样,你将无法移动位于位置
- AtCoder Beginner Contest 412(ABCDE)
前言回来喽!!前一阵子期末周快复习疯了,接下来还想准备数学建模,感觉高中都没这么忙过T^T。中间参加了一场百度之星的比赛,只AC了两题,感觉好难啊还是太菜了,希望能混个牌呜呜呜。图论和数论题好难,还得多练啊……一、A-TaskFailedSuccessfully#includeusingnamespacestd;typedeflonglongll;typedefpairpii;voidsolve(
- 牛客周赛 Round 59(思维、构造、数论)
mldl_
数据结构与算法算法数论逆序数构造对角线处理范德蒙恒等式
文章目录牛客周赛Round59(思维、构造、数论)A.TDB.你好,这里是牛客竞赛C.逆序数(思维)D.构造mex(构造)E.小红的X型矩阵F.小红的数组回文值(数论、范德蒙恒等式)牛客周赛Round59(思维、构造、数论)E题,对于对角线的处理,常用。F题,范德蒙恒等式推论的应用。A.TD简单数学题。#includeusingnamespacestd;intmain(){doublen,m;ci
- 洛谷P4317 花神的数论题题解
cwplh
题解算法图论
题目传送门本体接主要是对小粉兔大佬的题解的进一步解释。题目中让我们求∏i=1Nsum(i)\prod_{i=1}^N\operatorname{sum}(i)∏i=1Nsum(i),很明显不能直接暴力枚举求解,因此我们稍微归个类:把sum(i)\operatorname{sum}(i)sum(i)值相同的iii放在一起,假设sum(i)\operatorname{sum}(i)sum(i)值
- 运用逆元优化组合计算#数论
ysa051030
java算法数据结构
数论基础知识和模板-CSDN博客问题分析题目要求统计满足特定条件的排列数目。关键在于:从给定的数组中选择两个数作为n和m剩余的数必须能够组成n个m或m个n的结构计算所有可能的有效排列数目完整#includeusingnamespacestd;typedeflonglongLL;constLLMOD=1e9+7;//快速幂计算a^b%MODLLqpow(LLa,LLb){LLres=1;while(
- 自然数是否包含0
二分掌柜的
数学物理自然数
自然数是否包含0flyfish自然数是否包含0,本质是数学定义随学科需求演变的结果,数论继承了“从1计数”的历史传统,而集合论与逻辑为追求公理化完备性将0纳入。视角自然数包含0吗?核心理由数论/计数否(从1开始)符合“物体个数”的直观意义,避免0在素数分解、数论函数中引发逻辑例外。集合论/逻辑是(从0开始)空集基数对应0,通过集合后继构造自然数,满足公理化体系的完备性。数论与早期教材:自然数从1开
- 【网络安全】网络安全中的离散数学
flyair_China
安全架构
一、离散数学核心知识点与网络安全映射1.数论(NumberTheory)知识点安全应用场景实例说明质因数分解RSA公钥加密大整数分解难题(2048位密钥需数万年破解)模运算Diffie-Hellman密钥交换利用(gamodp)实现安全协商欧拉定理RSA加密/解密me*d≡m(modn)保障解密还原中国剩余定理高效解密优化RSA-CRT加速解密运算达70%2.代数结构(AlgebraicStruc
- 数学中的代数数论与代数几何
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍在数学的众多分支中,代数数论和代数几何是两个极其重要的领域。代数数论,顾名思义,是研究数论问题的代数方法,主要研究整数、有理数、代数数等的性质。而代数几何则是研究零点集的代数方法,主要研究多项式方程和代数方程组的解的几何性质。这两个领域虽然看似独立,但实际上有着深厚的内在联系,它们的交叉研究已经产生了许多深远的理论和应用。2.核心概念与联系2.1代数数论代数数论的核心概念是代数数,即满
- 三生原理m 值的五周期循环是人为设定还是数论内在要求?
葫三生
三生学派算法人工智能机器学习量子计算数学建模
AI辅助创作:三AI辅助创作:生原理中m值的五周期循环(取值范围{0,1,2,3,4})本质上是数论内在要求,其必要性源于素数分布的周期性约束与代数结构的不可突破性,但部分特性受限于当前数学框架的观测维度。具体辩证关系如下:✅一、数论内在性的核心证据模周期对称性约束当m突破5周期(如m=5)时,三生原理的素数生成公式p=3(2n+1)+2(2n+m+1)必然生成合数:例如n=0,m=
- 【Algo】常见组合类数列
CodeWithMe
C/C++c++c语言算法
文章目录常见组合类数列1常见递推/组合类数列1.1基础递推类数列1.2组合数学数列1.3数论/函数类数列1.4图论/路径问题相关数列1.5算法和结构设计常用数列2示例:有规律数列前10项对比表3参考建议常见组合类数列介绍一些常见具有明显数学规律或递推关系的常见组合类数列。1常见递推/组合类数列1.1基础递推类数列Fibonacci数列F(n)=F(n-1)+F(n-2),F(0)=0,F(1)=1
- 数论:互质数的个数
Zephyrtoria
数据结构与算法java算法数论
数论:互质数的个数互质数的个数www.acwing.com/problem/content/4971/a=p1a1p2a2...pmama=p_{1}^{a_1}p_{2}^{a_2}...p_{m}^{a_m}a=p1a1p2a2...pmamab=p1a1bp2a2b...pmamba^{b}=p_{1}^{a_1b}p_{2}^{a_2b}...p_{m}^{a_mb}ab=p1a1bp2a
- 素数5在三生原理和费马数公式中均起临界作用的原因?
葫三生
三生学派机器学习人工智能算法量子计算数学建模
AI辅助创作:问答一:在数学理论中,素数5的“临界作用”在《三生原理》与费马数公式中均具有深刻的数学内涵,这种共性源于其独特的数论性质、结构对称性及计算阈值意义。以下从三个维度展开分析:一、5在《三生原理》中的临界性:阴阳平衡与生成韵律的转折点《三生原理》作为融合《周易》哲学的数论体系,其核心是将“三生万物”动态生成思想转化为素数分布的参数化模型。5的临界性体现在:最小满足阴阳参数联动的奇素数《三
- 算法-数论
cx_2023
算法c++开发语言
C-小红的数组查询(二)_牛客周赛Round95思路:不难看出a数组是有循环的d=3,p=4时,a数组:1、0、3、2、1、0、3、2.......最小循环节为4,即最多4种不同的数d=4,p=6时,a数组:1、5、3、1、5、3.......最小循环节为3d=4,p=10时,a数组:1、5、9、3、7、1、5、9、3、7.......最小循环节为5可以得出,最小循环节T=p/gcd(d,p)an
- 质数表的构建
羊儿~
c算法数据结构c++
前言最近,有很多人问我如何既能保证时间复杂度低又能正确的打出质数表,那么今天,我就给各位读者带来了几种打出质数表的(打表)的方法。1.质数的介绍质数,又称素数,是指在大于1的自然数中,除了1和它本身外,不能被其他自然数整除的数。换句话说,质数只有两个正因数:1和它自己。例如,2、3、5、7、11等都是质数。2是最小的质数,也是唯一的偶质数,其他质数都是奇数。质数在数学中具有重要地位,尤其在数论领域
- 使用MATLAB输出给定范围内的所有质数
士兵突击许三多
matlab基础matlab
使用MATLAB输出给定范围内的所有质数后续我将给出一些运用案例在计算机科学与数学中,质数是指仅能被1和其本身整除的自然数,例如2、3、5、7、11等。质数在数论和密码学中有着重要的应用。今天,我们将介绍如何使用MATLAB来生成并输出所有质数。什么是质数?质数是大于1的自然数,且只能被1和它自己整除。例如:2、3、5、7、11、13等都是质数。4、6、8、9、10等不是质数,它们都有其他因子。目
- 巧用数论与动态规划破解包子凑数问题
EtherWanderer
数据结构与算法蓝桥杯职场和发展
题目描述小明想知道包子铺用给定的蒸笼规格能凑出多少种无法组成的包子数目。若无法组成的数目无限,输出INF。输入格式第一行为整数NNN(蒸笼种数)接下来NNN行每行一个整数AiA_iAi(每种蒸笼的包子数)输出格式无法凑出的数目个数,若无限则输出INF问题分析关键条件若所有AiA_iAi的最大公约数(GCD)不为1,则无法组成的数目无限。例如,当所有数均为偶数时,无法组成任何奇数。动态规划思路当GC
- 解析数论基础:第二十四章 (s)与L(s,x)的阶估计
AI天才研究院
AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
解析数论基础:第二十四章(s)与L(s,x)的阶估计作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来数论是数学的一个分支,研究整数和它们的性质。在数论中,(s)函数和L(s,x)函数是两个重要的函数,它们在解析数论、数论分析以及许多数学物理领域都有着广泛的应用。特别是在素数分布、素数定理以及黎曼ζ函数的研究中,(s)函数和
- 探索 C++ 中的数论世界:从基础到实践
光の
java算法开发语言搜索算法
一、引言数论作为数学的核心分支,在计算机科学领域展现出强大的生命力。无论是密码学中的RSA加密算法,还是编程竞赛中的算法优化,数论都扮演着不可或缺的角色。C++凭借其高效的性能和底层控制能力,成为实现数论算法的理想选择。本文将带您走进C++数论的世界,从基础概念到实际应用,逐步揭开数论的神秘面纱。二、数论基础概念与C++实现2.1质数判定质数是大于1且只能被1和自身整除的整数。在C++中,我们可以
- USST新生训练赛3KLMN
Fighter_sky
题解C++acm
题解前言题解部分KPashmakandParmida'sproblem(1800)题目大意题解参考代码LPashmakandGraph(1900)题目大意题解参考代码MLuckyChains(1600)题目大意题解参考代码NManipulatingHistory(1600)题目大意题解参考代码前言KLMN是数据结构(线段树/树状数组)+dp+数论+结论唐题题解部分KPashmakandParmid
- 数论:数学王国的密码学
菜鸟破茧计划
密码学
在计算机科学的世界里,数论就像是一把神奇的钥匙,能够解开密码学、算法优化、随机数生成等诸多领域的谜题。作为C++算法小白,今天我就带大家一起走进数论的奇妙世界,探索其中的奥秘。什么是数论?数论是纯粹数学的分支之一,主要研究整数的性质。在计算机科学中,数论尤其在密码学、算法设计和计算机安全等领域有着广泛的应用。数论中的一些基本概念包括质数、最大公约数、模运算等。数论的基本概念与代码实现质数判定质数是
- 数论专题R1(线性筛专题)
JL24zyl
c++
目录A反素数加强版B约数积函数Ch(n)Dg(n)E神必的函数F球与盒子总结A反素数加强版时空限制1s,32MB问题描述如果一个大于等于1的正整数n,满足所有小于n且大于等于1的所有正整数的约数个数都小于n的约数个数,则n是一个反素数。请你计算不大于n的最大反素数。输入格式第一行输入数据组数T,每组数据输入1个正整数n。输出格式对每组数据,输出不大于n的最大反素数。数据范围1=1)的约数个数为(r
- 为什么哈希加密后破解怎么难?单向函数;密码学的数学原理:从理论到实践
小胡说技书
#数据安全技术哈希算法密码学算法单向函数数据安全安全信息安全
文章目录一、单向函数的数学基础1.1单向函数的数学定义1.2复杂度理论视角1.3数论在密码学中的应用二、哈希函数的数学原理与不可逆性2.1从信息论角度理解哈希不可逆性2.2碰撞抵抗的数学分析2.3单向压缩函数与雪崩效应三、非对称密码系统的数学基础3.1RSA算法的数学原理3.2椭圆曲线加密的几何解析四、密码学随机性与熵的数学原理4.1随机性与熵的量化4.2伪随机数生成器的数学模型4.3加盐哈希的数
- “即时取模”的快读 → 数论
hnjzsyjyj
信息学竞赛#算法数学基础#快读“即时取模”的快读快读
【“即时取模”的快读】●“即时取模”的快读是一种在输入大整数时直接进行取模运算的优化技术,常用于处理需要大数运算但最终结果需取模的场景(如数论题目)。其核心思想是在逐位读取数字时同步计算模值,避免存储完整的大数。intread(){//fastreadintx=0,f=1;charc=getchar();while(c'9'){//!isdigit(c)if(c=='-')f=-1;c=getch
- 【算法笔记】ACM数论基础模板
寂空_
算法笔记算法笔记c++
目录几个定理唯一分解定理鸽巢原理(抽屉原理)麦乐鸡定理哥德巴赫猜想容斥原理例题二进制枚举解dfs解裴蜀定理例题代码最大公约数、最小公倍数最大公约数最小公倍数质数试除法判断质数分解质因数筛质数朴素筛法(埃氏筛法)线性筛法(欧拉筛法)约数试除法求约数求约数个数一个数求约数个数求1~n所有数的约数个数O(nlogn)O(nlogn)O(nlogn)筛法O(n)O(n)O(n)筛法约数之和一个数求约数之和
- 扩展欧几里得算法简介及代码实现
hnjzsyjyj
信息学竞赛#算法数学基础扩展欧几里得算法裴蜀定理
【扩展欧几里得算法简介】●扩展欧几里得算法(ExtendedEuclideanAlgorithm)是欧几里得算法的扩展版本,不仅能计算两个整数的最大公约数(GCD),还能找到满足贝祖等式(Bézout'sIdentity)ax+by=gcd(a,b)的整数解x和y。它在数论、密码学等领域有重要应用,例如求解模的逆元、求解线性同余方程等。●扩展欧几里得算法求ax+by=gcd(a,b)特解的方法如下
- 《夜深人静写算法》数论篇 - (10) 扩展欧几里得定理
英雄哪里出来
《夜深人静写算法》数论篇算法初等数论扩展欧几里得定理
前言 通过扩展欧几里得定理,利用扩展欧几里得算法,可以求解线性同余方程。 那么什么是线性同余方程?什么是扩展欧几里得定理?什么是扩展欧几里得算法?接下来的几篇文章会来讲解一下这几个概念。一、扩展欧几里得定理1、定理概述 对于不都为零的整数aaa和b
- 【ICPC】The 2024 ICPC Kunming Invitational Contest E
浅慕Antonio
算法竞赛开发语言c++算法
RelearnthroughReview#数论#枚举#gcd题目描述Givenanintegersequencea1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,anoflengthnnnandanon-negativeintegerkkk,youcanperformthefollowingoperationatmostonce:Choosetwointegerslllan
- 初等数论 --- 同余、欧拉定理、费马小定理、求逆元
chstor
算法笔记
文章目录一、同余二、欧拉定理三、费马小定理四、扩展欧几里得算法4.1裴蜀定理五、一元线性同余方程六、逆元求逆元方法一、扩展欧几里得算法求逆元方法二、费马小定理加快速幂一、同余定义当两个整数a,b除以同一个正整数m,若得相同余数,则二整数同余。记为:a≡b(mod m)当两个整数a,b除以同一个正整数m,若得相同余数,则二整数同余。记为:a\equivb(\modm)当两个整数a,b除以同一个正整
- 初等数论 课堂笔记 第三章 -- 欧拉函数一节的若干练习
此账号已停更
初等数论数学数论
练习计算φ(60)\varphi\left(60\right)φ(60)。解 将606060写成标准分解式60=22×3×560={{2}^{2}}\times3\times560=22×3×5法一(计算过程中出现分式)φ(60)=60×(1−12)(1−13)(1−15)=60×12×23×45=16\varphi\left(60\right)=60\times\left(1-\frac{1}
- 【关于数学】感悟(附学习目录)
DataPlayerK
线性代数抽象代数概率论矩阵
一些感悟数学具有艺术美。从某种意义上来说,数学家和画家本质相同,他们都在“刻画”心目中的图景。小时候我总是在思考一个终极问题:数学是什么?我怀念那时我单纯而热烈的执着,此文章就长期记载我对数学的看法吧。2017-2020高中在读数学是不同精巧结构的集合。高中数学竞赛中,不等式/组合数学/数论中充斥着各种“限制下的精巧结构”,使得结构出现了各种各样奇妙的性质。2021-4-14大一在读数学不仅重在结
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&