hdu4366 Successor

好题!   但是感觉题目描述不是很清楚

这题只是询问开除某人后,他的下属中谁会替代他的位置,不会更新这个位置

要求一个子树中忠诚度最高的人。可以想到dfs树,保留时间戳,每个节点便表示一个区间

那么便可以建树维护最高忠诚度。。。只是要保证能力值也要比被开除者高

那么根据能力值从大到小对员工排序,依次更新。那么可以保证之前更新的节点的能力值都大于当前要查询的节点

这里要注意一点,能力值相同的员工要同时查询和更新

最后一点是。。。按理说更新时应该更新这个员工表示的区间   但是这样会超时

其实只用更新此员工区间的第一个值就可以了,因为查询的时候是员工表示的区间,那么必然可以查询到更新的这个值

记得数组开大一点。。。很容易RE


//#pragma comment(linker, "/STACK:102400000,102400000")
//HEAD
#include 
#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;
//LOOP
#define FE(i, a, b) for(int i = (a); i <= (b); ++i)
#define FED(i, b, a) for(int i = (b); i>= (a); --i)
#define REP(i, N) for(int i = 0; i < (N); ++i)
#define CLR(A,value) memset(A,value,sizeof(A))
//STL
#define PB push_back
//INPUT
#define RI(n) scanf("%d", &n)
#define RII(n, m) scanf("%d%d", &n, &m)
#define RIII(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define RS(s) scanf("%s", s)


#define FF(i, a, b) for(int i = (a); i < (b); ++i)
#define FD(i, b, a) for(int i = (b) - 1; i >= (a); --i)
#define CPY(a, b) memcpy(a, b, sizeof(a))
#define FC(it, c) for(__typeof((c).begin()) it = (c).begin(); it != (c).end(); it++)
#define EQ(a, b) (fabs((a) - (b)) <= 1e-10)
#define ALL(c) (c).begin(), (c).end()
#define SZ(V) (int)V.size()
#define RIV(n, m, k, p) scanf("%d%d%d%d", &n, &m, &k, &p)
#define RV(n, m, k, p, q) scanf("%d%d%d%d%d", &n, &m, &k, &p, &q)
#define WI(n) printf("%d\n", n)
#define WS(s) printf("%s\n", s)
#define sqr(x) x * x

#define LL(x) ((x) << 1)
#define RR(x) ((x) << 1 | 1)
typedef vector  VI;
typedef unsigned long long ULL;
typedef long long LL;
const int INF = 0x3f3f3f3f;
const int maxn = 50010;
const double eps = 1e-10;
const LL MOD = 1e9 + 9;

int n, m, dfs_c;
int s[maxn], e[maxn];
int ans[maxn];
map mm;

struct Node{
    int id, loy, ab;
    bool operator<(const Node& x) const{
        if (ab != x.ab)
            return ab > x.ab;
        return id < x.id;
    }
}a[maxn];

struct Seg{
    int l, r, num;
}seg[maxn * 5];

VI t[maxn];

void dfs(int u, int fa)
{
    s[u] = ++dfs_c;
    REP(i, t[u].size())
    {
        int v = t[u][i];
        if (v != fa)
            dfs(v, u);
    }
    e[u] = ++dfs_c;
}

void build(int l, int r, int rt )
{
    seg[rt].num = -1;
    seg[rt].l = l, seg[rt].r = r;
    if (l == r)
        return;
    int mid = (l + r) >> 1;
    build(l, mid, LL(rt));
    build(mid + 1, r, RR(rt));
}

void update(int pos, int val, int rt)
{
    if (seg[rt].l == seg[rt].r && seg[rt].l == pos)
    {
//        cout << "pos   " << pos  << ' ' << val<< endl;
        seg[rt].num = val;
        return;
    }
    int mid = (seg[rt].l + seg[rt].r) >> 1;
    if (pos <= mid)
        update(pos, val, LL(rt));
    else
        update(pos, val, RR(rt));
    seg[rt].num = max(seg[LL(rt)].num, seg[RR(rt)].num);
}

int query(int l, int r, int rt)
{
    if (seg[rt].l == l && seg[rt].r == r)
        return seg[rt].num;
    int mid = (seg[rt].l + seg[rt].r) >> 1;
    if (r <= mid)
        return query(l, r, LL(rt));
    else if (l > mid)
        return query(l, r, RR(rt));
    return max(query(l, mid, LL(rt)), query(mid + 1, r, RR(rt)));
}

int main()
{
    int T;  RI(T);
    while (T--)
    {
        RII(n, m);
        REP(i, n + 1)   t[i].clear();
        dfs_c = 0;  mm.clear();
        int x, y, z;
        a[0].id = 0, a[0].loy = -1, a[0].ab = -1;
        FE(i, 1, n - 1)
        {
            RIII(x, y, z);
            t[x].PB(i);
            a[i].loy = y, a[i].ab = z, a[i].id = i;
            mm[y] = i;
        }
        dfs(0, -1);
//        cout << "dfs Done" << endl;
        build(1, dfs_c, 1);
//        cout << "build Done" << endl;
        sort(a, a + n);
        CLR(ans, -1);
        for (int i = 0, j; i < n; i = j)
        {
            j = i;
            while (j < n && a[j].ab == a[i].ab)
            {
                int tmp = query(s[a[j].id], e[a[j].id], 1);
                if (mm.count(tmp))
                    ans[a[j].id] = mm[tmp];
//                cout << tmp << endl;
                j++;
            }
            for (int k = i; k < j; k++)
                update(s[a[k].id], a[k].loy, 1);
//            for (int k = 1; k < 3 * dfs_c; k++)
//                printf("  L: %d  R:%d  num:%d\n", seg[k].l, seg[k].r , seg[k].num);
        }
        while (m--)
        {
            RI(x);
            WI(ans[x]);
        }
    }
    return 0;
}
/*

*/


你可能感兴趣的:(ACM,数据结构)