Machine_Learning_2019_Task 8 决策树

Machine_Learning_2019_Task 8 决策树

  • ID3(基于信息增益)
  • C4.5(基于信息增益比)
  • CART(Gini指数

扩充:学习CART的生成(回归树模型)【参考统计学习方法】

熵: H ( x ) = − ∑ i = 1 n p i log ⁡ p i H(x) = -\sum_{i=1}^{n}p_i\log{p_i} H(x)=i=1npilogpi

条件熵: H ( X ∣ Y ) = ∑ P ( X ∣ Y ) log ⁡ P ( X ∣ Y ) H(X|Y)=\sum{P(X|Y)}\log{P(X|Y)} H(XY)=P(XY)logP(XY)

信息增益 : g ( D , A ) = H ( D ) − H ( D ∣ A ) g(D, A)=H(D)-H(D|A) g(D,A)=H(D)H(DA)

信息增益比: g R ( D , A ) = g ( D , A ) H ( A ) g_R(D, A) = \frac{g(D,A)}{H(A)} gR(D,A)=H(A)g(D,A)

Gini 指数: G i n i ( D ) = ∑ k = 1 K p k log ⁡ p k = 1 − ∑ k = 1 K p k 2 Gini(D)=\sum_{k=1}^{K}p_k\log{p_k}=1-\sum_{k=1}^{K}p_k^2 Gini(D)=k=1Kpklogpk=1k=1Kpk2

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from collections import Counter
import math
from math import log

import pprint

生成数据集

def create_data():
    datasets = [['青年', '否', '否', '一般', '否'],
               ['青年', '否', '否', '好', '否'],
               ['青年', '是', '否', '好', '是'],
               ['青年', '是', '是', '一般', '是'],
               ['青年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '好', '否'],
               ['中年', '是', '是', '好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '好', '是'],
               ['老年', '是', '否', '好', '是'],
               ['老年', '是', '否', '非常好', '是'],
               ['老年', '否', '否', '一般', '否'],
               ]
    labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
    # 返回数据集和每个维度的名称
    return datasets, labels
datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
train_data
年龄 有工作 有自己的房子 信贷情况 类别
0 青年 一般
1 青年
2 青年
3 青年 一般
4 青年 一般
5 中年 一般
6 中年
7 中年
8 中年 非常好
9 中年 非常好
10 老年 非常好
11 老年
12 老年
13 老年 非常好
14 老年 一般
# 熵
def calc_ent(datasets):
    data_length = len(datasets)
    label_count = {}
    for i in range(data_length):
        label = datasets[i][-1]
        if label not in label_count:
            label_count[label] = 0
        label_count[label] += 1
    ent = -sum([(p/data_length)*log(p/data_length, 2) for p in label_count.values()])
    return ent

# 条件熵
def cond_ent(datasets, axis=0):
    data_length = len(datasets)
    feature_sets = {}
    for i in range(data_length):
        feature = datasets[i][axis]
        if feature not in feature_sets:
            feature_sets[feature] = []
        feature_sets[feature].append(datasets[i])
    cond_ent = sum([(len(p)/data_length)*calc_ent(p) for p in feature_sets.values()])
    return cond_ent

# 信息增益
def info_gain(ent, cond_ent):
    return ent - cond_ent

def info_gain_train(datasets):
    count = len(datasets[0]) - 1
    ent = calc_ent(datasets)
    best_feature = []
    for c in range(count):
        c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
        best_feature.append((c, c_info_gain))
        print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
    # 比较大小
    best_ = max(best_feature, key=lambda x: x[-1])
    return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
info_gain_train(np.array(datasets)) # 将dataset转换为ndarray类型
特征(年龄) - info_gain - 0.083
特征(有工作) - info_gain - 0.324
特征(有自己的房子) - info_gain - 0.420
特征(信贷情况) - info_gain - 0.363

'特征(有自己的房子)的信息增益最大,选择为根节点特征'

利用ID3算法生成决策

# 定义节点类
class Node:
    def __init__(self, root=True, label=None, feature_name=None, feature=None):
        self.root = root
        self.label = label
        self.feature_name = feature_name
        self.feature = feature
        self.tree = {}
        self.result = {'label:': self.label, 'feature': self.feature, 'tree': self.tree}

    def __repr__(self):
        return '{}'.format(self.result)

    def add_node(self, val, node):
        self.tree[val] = node

    def predict(self, features):
        if self.root is True:
            return self.label
        return self.tree[features[self.feature]].predict(features)

# 定义二叉树
class DTree:
    def __init__(self, epsilon=0.1):
        self.epsilon = epsilon
        self._tree = {}

    # 熵
    @staticmethod
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p/data_length)*log(p/data_length, 2) for p in label_count.values()])
        return ent

    # 条件熵
    def cond_ent(self, datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum([(len(p)/data_length)*self.calc_ent(p) for p in feature_sets.values()])
        return cond_ent

    # 信息增益
    @staticmethod
    def info_gain(ent, cond_ent):
        return ent - cond_ent

    def info_gain_train(self, datasets):
        count = len(datasets[0]) - 1
        ent = self.calc_ent(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
        # 比较大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return best_

    def train(self, train_data):
        """
        input:数据集D(DataFrame格式),特征集A,阈值eta
        output:决策树T
        """
        _, y_train, features = train_data.iloc[:, :-1], train_data.iloc[:, -1], train_data.columns[:-1]
        # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
        if len(y_train.value_counts()) == 1:
            return Node(root=True,
                        label=y_train.iloc[0])

        # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
        if len(features) == 0:
            return Node(root=True, label=y_train.value_counts().sort_values(ascending=False).index[0])

        # 3,计算最大信息增益 Ag为信息增益最大的特征
        max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
        max_feature_name = features[max_feature]

        # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T
        if max_info_gain < self.epsilon:
            return Node(root=True, label=y_train.value_counts().sort_values(ascending=False).index[0])

        # 5,构建Ag子集
        node_tree = Node(root=False, feature_name=max_feature_name, feature=max_feature)

        feature_list = train_data[max_feature_name].value_counts().index
        for f in feature_list:
            sub_train_df = train_data.loc[train_data[max_feature_name] == f].drop([max_feature_name], axis=1)

            # 6, 递归生成树
            sub_tree = self.train(sub_train_df)
            node_tree.add_node(f, sub_tree)

        return node_tree

    def fit(self, train_data):
        self._tree = self.train(train_data)
        return self._tree

    def predict(self, X_test):
        return self._tree.predict(X_test)
datasets, labels = create_data()
data_df = pd.DataFrame(datasets, columns=labels)
dt = DTree()
tree = dt.fit(data_df)
tree
{'label:': None, 'feature': 2, 'tree': {'否': {'label:': None, 'feature': 1, 'tree': {'否': {'label:': '否', 'feature': None, 'tree': {}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}}
dt.predict(['老年', '否', '否', '一般'])
'否'

sklearn.tree.DecisionTreeClassifier

criterion : string, optional (default=”gini”)

用于测量分割质量的函数.

Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain.

def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, [0, 1, -1]])
    print(data)
    return data[:,:2], data[:,-1]

X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
[[5.1 3.5 0. ]
 [4.9 3.  0. ]
 [4.7 3.2 0. ]
 [4.6 3.1 0. ]
 [5.  3.6 0. ]
 [5.4 3.9 0. ]
 [4.6 3.4 0. ]
 [5.  3.4 0. ]
 [4.4 2.9 0. ]
 [4.9 3.1 0. ]
 [5.4 3.7 0. ]
 [4.8 3.4 0. ]
 [4.8 3.  0. ]
 [4.3 3.  0. ]
 [5.8 4.  0. ]
 [5.7 4.4 0. ]
 [5.4 3.9 0. ]
 [5.1 3.5 0. ]
 [5.7 3.8 0. ]
 [5.1 3.8 0. ]
 [5.4 3.4 0. ]
 [5.1 3.7 0. ]
 [4.6 3.6 0. ]
 [5.1 3.3 0. ]
 [4.8 3.4 0. ]
 [5.  3.  0. ]
 [5.  3.4 0. ]
 [5.2 3.5 0. ]
 [5.2 3.4 0. ]
 [4.7 3.2 0. ]
 [4.8 3.1 0. ]
 [5.4 3.4 0. ]
 [5.2 4.1 0. ]
 [5.5 4.2 0. ]
 [4.9 3.1 0. ]
 [5.  3.2 0. ]
 [5.5 3.5 0. ]
 [4.9 3.6 0. ]
 [4.4 3.  0. ]
 [5.1 3.4 0. ]
 [5.  3.5 0. ]
 [4.5 2.3 0. ]
 [4.4 3.2 0. ]
 [5.  3.5 0. ]
 [5.1 3.8 0. ]
 [4.8 3.  0. ]
 [5.1 3.8 0. ]
 [4.6 3.2 0. ]
 [5.3 3.7 0. ]
 [5.  3.3 0. ]
 [7.  3.2 1. ]
 [6.4 3.2 1. ]
 [6.9 3.1 1. ]
 [5.5 2.3 1. ]
 [6.5 2.8 1. ]
 [5.7 2.8 1. ]
 [6.3 3.3 1. ]
 [4.9 2.4 1. ]
 [6.6 2.9 1. ]
 [5.2 2.7 1. ]
 [5.  2.  1. ]
 [5.9 3.  1. ]
 [6.  2.2 1. ]
 [6.1 2.9 1. ]
 [5.6 2.9 1. ]
 [6.7 3.1 1. ]
 [5.6 3.  1. ]
 [5.8 2.7 1. ]
 [6.2 2.2 1. ]
 [5.6 2.5 1. ]
 [5.9 3.2 1. ]
 [6.1 2.8 1. ]
 [6.3 2.5 1. ]
 [6.1 2.8 1. ]
 [6.4 2.9 1. ]
 [6.6 3.  1. ]
 [6.8 2.8 1. ]
 [6.7 3.  1. ]
 [6.  2.9 1. ]
 [5.7 2.6 1. ]
 [5.5 2.4 1. ]
 [5.5 2.4 1. ]
 [5.8 2.7 1. ]
 [6.  2.7 1. ]
 [5.4 3.  1. ]
 [6.  3.4 1. ]
 [6.7 3.1 1. ]
 [6.3 2.3 1. ]
 [5.6 3.  1. ]
 [5.5 2.5 1. ]
 [5.5 2.6 1. ]
 [6.1 3.  1. ]
 [5.8 2.6 1. ]
 [5.  2.3 1. ]
 [5.6 2.7 1. ]
 [5.7 3.  1. ]
 [5.7 2.9 1. ]
 [6.2 2.9 1. ]
 [5.1 2.5 1. ]
 [5.7 2.8 1. ]]
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train,)
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
            max_features=None, max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, presort=False, random_state=None,
            splitter='best')
clf.score(X_test, y_test)
0.9333333333333333

CART树

决策树生成

决策树剪枝

回归树:平方误差最小化

分类树:Gini Index

回归树的生成

设Y是连续变量,给定训练数据集 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } D=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\} D={(x1,y1),(x2,y2),,(xN,yN)}

假设已将输入空间划分为M各单元R1,R2…Rm,并且每个单元Rm上有一个固定的输出Cm,回归树表示为

f ( x ) = ∑ m = 1 M c m I ( x ∈ R m ) f(x)=\sum_{m=1}^{M} c_{m} I\left(x \in R_{m}\right) f(x)=m=1McmI(xRm)

平方误差来表示预测误差,用平方误差最小准则求解每个单元上的最优输出值

∑ x ∈ R n ( y i − f ( x i ) ) 2 \sum_{x \in R_{n}}\left(y_{i}-f\left(x_{i}\right)\right)^{2} xRn(yif(xi))2

Rm上的Cm的最优值 c ^ m = ave ⁡ ( y i ∣ x i ∈ R m ) \hat{c}_{m}=\operatorname{ave}\left(y_{i} | x_{i} \in R_{m}\right) c^m=ave(yixiRm)

如何对输入空间进行划分?

启发式:选择第j个变量x(j)和它取的值s,作为切分变量和切分点,定义两个区域

R 1 ( j , s ) = { x ∣ x ( j ) ⩽ s } R_{1}(j, s)=\left\{x | x^{(j)} \leqslant s\right\} R1(j,s)={xx(j)s}

R 2 ( j , s ) = { x ∣ x ( j ) > s } R_{2}(j, s)=\left\{x | x^{(j)}>s\right\} R2(j,s)={xx(j)>s}

然后寻找最优切分变量和切分点

min ⁡ j , s [ min ⁡ a 1 ∑ x ∈ R 1 ( y , s ) ( y i − c 1 ) 2 + min ⁡ c 2 ∈ R 2 ( j , s ) ( y i − c 2 ) 2 ] \min _{j, s}\left[\min _{a_{1}} \sum_{x \in R_{1}(y, s)}\left(y_{i}-c_{1}\right)^{2}+\min _{c_{2} \in R_{2}(j, s)}\left(y_{i}-c_{2}\right)^{2}\right] minj,s[mina1xR1(y,s)(yic1)2+minc2R2(j,s)(yic2)2]

同时满足

c ^ 1 = ave ⁡ ( y i ∣ x i ∈ R 1 ( j , s ) ) \hat{c}_{1}=\operatorname{ave}\left(y_{i} | x_{i} \in R_{1}(j, s)\right) c^1=ave(yixiR1(j,s))

c ^ 2 = ave ⁡ ( y i ∣ x i ∈ R 2 ( j , s ) ) \hat{c}_{2}=\operatorname{ave}\left(y_{i} | x_{i} \in R_{2}(j, s)\right) c^2=ave(yixiR2(j,s))

再对两个区域重复上述划分,直至满足停止条件。

最小二乘回归树生成算法

输入:训练数据集D

输出:回归树f(x)

在训练数据集所在的输入空间中,递归地将每个区域划分为两个子区域并决定每个子区域上的输出值,构建二叉决策树

(1)选择最优切分变量j与切分点s,求解

min ⁡ j , s [ min ⁡ a 1 ∑ x ∈ R 1 ( y , s ) ( y i − c 1 ) 2 + min ⁡ c 2 ∈ R 2 ( j , s ) ( y i − c 2 ) 2 ] \min _{j, s}\left[\min _{a_{1}} \sum_{x \in R_{1}(y, s)}\left(y_{i}-c_{1}\right)^{2}+\min _{c_{2} \in R_{2}(j, s)}\left(y_{i}-c_{2}\right)^{2}\right] minj,s[mina1xR1(y,s)(yic1)2+minc2R2(j,s)(yic2)2]

遍历变量j,对固定的切分变量j扫描切分点s,选择使上式达到最小值的对(j, s)

(2)用选定的对(j, s)划分区域并决定相应的输出值

R 1 ( j , s ) = { x ∣ x ( j ) ⩽ s } , R 2 ( j , s ) = { x ∣ x ( j ) > s } R_{1}(j, s)=\left\{x | x^{(j)} \leqslant s\right\}, \quad R_{2}(j, s)=\left\{x | x^{(j)}>s\right\} R1(j,s)={xx(j)s},R2(j,s)={xx(j)>s}

c ^ m = 1 N m ∑ x i ∈ R n ( j , s ) y i , x ∈ R m , m = 1 , 2 \hat{c}_{m}=\frac{1}{N_{m}} \sum_{x_{i} \in R_{n}(j, s)} y_{i}, \quad x \in R_{m}, \quad m=1,2 c^m=Nm1xiRn(j,s)yi,xRm,m=1,2

(3)继续对两个子区域调用步骤(1)(2),直至满足条件;

(4)将输入空间划分为M个区域R1,R2,…,RM,生成决策树

f ( x ) = ∑ m = 1 M c ^ m I ( x ∈ R m ) f(x)=\sum_{m=1}^{M} \hat{c}_{m} I\left(x \in R_{m}\right) f(x)=m=1Mc^mI(xRm)

你可能感兴趣的:(机器学习,学习笔记)