- LiDAR360 5.2.2:如梦令般的体验与感悟
VXHAruanjian888
航测软件信息可视化数据分析数据挖掘arcgis
初识LiDAR360忆昔年,初识LiDAR360,心中波澜起伏,恰如陆游笔下的江南春色,绚丽多姿。那时,我怀着满腔热情,踏入了这片未知的领域。LiDAR3605.2.2,如同一位睿智的导师,引领我在点云数据的海洋中遨游。功能强大,细节精致LiDAR3605.2.2的功能之强大,令人叹为观止。它不仅支持多种点云数据格式,还能进行高效的点云处理与分析。每当我使用它进行地形建模、植被分析或是城市三维建模
- 雷达mid360 和 Fast Lio
AugustInSopton
人工智能
1.实时激光里程计+建图(SLAM)FAST‑LIO(及FAST‑LIO2)通过融合LiDAR点云与IMU数据,提供高频(可达~100 Hz)的位姿估计(实时里程计)与增量建图功能https://github.com/SylarAnh/fast_lio_mid360https://github.com/SylarAnh/fast_lio_mid360支持Mid‑360这种全向固态LiDAR,默认r
- 主流 3D 感知技术对比-iTOF、dTOF、结构光、激光雷达
moonsims
数码相机
主流3D感知技术对比-iTOF、dTOF、结构光、激光雷达四类主流3D感知技术对比表对比维度iToF相机dToF相机固态LiDAR+可见光融合结构光相机测距原理连续调制光→相位差计算激光脉冲→飞行时间测距激光扫描点云+图像纹理融合投射编码光图案+视差三角测量代表设备IntelD435i,AzureKinectSTVL53L5CX,SonyIMX611L3CAM,RoboSenseM1+RGBRea
- matlab 渐进三角网(PTD)地面滤波(基础版)
点云侠
matlab点云工具箱matlab开发语言算法c++计算机视觉
目录一、算法原理1、PTD算法2、实现流程二、代码实现三、结果展示1、原始点云2、滤波结果代码是按照算法原理的复现,效率极低,只适合学习和理解算法。一、算法原理1、PTD算法 渐进三角网地面滤波算法(ProgressiveTINDensification,PTD)是一种广泛应用于机载LiDAR点云数据处理的滤波方法,旨在从复杂场景中精确分离地面点,以生成数字高程模型(DEM)。2、实现流程 P
- 多模态融合相机L3CAM
moonsims
人工智能
多模态融合相机L3CAML3CAM是Beamagine公司推出的多模态传感器融合技术,结合了激光雷达(LiDAR)和可见光摄像头,旨在为自动驾驶、工业机器人和其他需要精确环境感知的应用场景提供高效、安全的解决方案。L3CAM技术参数L3CAM结合了LiDAR和可见光摄像头,使其能够提供三维空间感知及图像级别的环境识别能力激光雷达部分(LiDAR)探测范围:大约200米(具体范围根据不同环境和反射面
- Open3D 进阶(31)渐进三角网(PTD)地面滤波
点云侠
点云进阶线性代数算法计算机视觉python
目录一、算法原理1、PTD算法2、实现流程二、代码实现三、参数指南四、结果展示。一、算法原理1、PTD算法 渐进三角网地面滤波算法(ProgressiveTINDensification,PTD)是一种广泛应用于机载LiDAR点云数据处理的滤波方法,旨在从复杂场景中精确分离地面点,以生成数字高程模型(DEM)。2、实现流程 PTD的核心思想是迭代加密三角网,逐步逼近真实地形:实现流程主要包括以
- 点云从入门到精通技术详解100篇-点云滤波算法及单木信息提取
格图素书
人工智能
目录知识储备点云滤波算法及单木信息提取点云条件滤波单木信息提取1.点云预处理2.点云密度计算3.密度阈值筛选4.骨架提取5.骨架细化优化方向前言国内外研究现状激光雷达研究现状点云数据的滤波算法研究现状单木分割应用现状LiDAR工作原理与点云数据的组成2.1LiDAR系统的内部结构2.1.1激光测距单元2.1.2光学机械扫描单元2.1.3惯性导航系统INS2.1.4动态差分GPS2.2定位原理2.3
- 革命性的检测:京瓷推出全球首款具有完美光学对准的摄像头-激光雷达融合传感器
moonsims
人工智能
革命性的检测:京瓷推出全球首款具有完美光学对准的摄像头-激光雷达融合传感器激光雷达(LIDAR)能够即时获取远距离、高精度的3D信息,从而能够在复杂环境和高速运动中以无与伦比的精度检测障碍物。它具有卓越的空间识别能力,能够根据激光束在广阔区域内反射回来的光的时间和角度,识别物体的距离及其大小。通常,激光雷达与摄像头配合使用,可以更准确地识别物体,但不同单元数据中的视差常常导致传感器之间校准延迟。京
- 【平面波导外腔激光器专题系列】用于光纤传感的低噪声PLC外腔窄线宽激光器
见合八方-专业国产SOA供应商
平面人工智能性能优化网络信息与通信科技
摘要高性价比的1550nmDWDM平面外腔(PLANEX)激光器是干涉测量、布里渊、LIDAR和其他光传感应用的最佳选择。其线宽,散粒噪声限制为>500kHz。不存在光纤激光器典型的RIN峰值,更适合声学和地震传感干涉测量。与基于FBG的激光器(ECL和光纤激光器)相比,PLANEX腔坚固耐用且本质稳定,激光器的可靠性已通过Telcordia认证,集成模块设计用于在恶劣的环境条件和振动下运行。PL
- 无人机数据处理系统设计与难点
云卓SKYDROID
无人机高科技人工智能科普云卓科技
一、系统设计要点1.数据采集层多源传感器集成支持RGB相机、多光谱/高光谱相机、LiDAR、热成像仪、RTK/PPK定位模块等。自适应采集策略动态调整飞行高度、航速、重叠率,适应地形与任务需求。元数据绑定时间戳、GPS位置、IMU姿态角、传感器参数同步存储。2.数据传输与存储边缘端预处理实时压缩:使用H.265或JPEG2000降低传输带宽。数据分块:将大文件拆分为时空分块。混合存储架构plain
- TopNet:基于Transformer的高效点云几何压缩网络模型详解
清风AI
深度学习算法详解及代码复现计算机视觉算法深度学习人工智能计算机视觉神经网络transformer卷积神经网络python
一、研究背景与挑战随着激光雷达(LiDAR)技术的普及,点云数据在自动驾驶、三维重建等领域得到广泛应用。然而,点云数据的无序性、稀疏性给存储和传输带来巨大挑战。传统的点云几何压缩(PCGC)方法难以平衡压缩率与精度,而深度学习方法逐渐成为主流。现有方法主要分为两类:CNN-based方法:通过3D卷积提取局部特征,但受限于固定感受野,难以捕捉长距离依赖。Transformer-based方法:利用
- 深度学习多模态融合_3D目标检测多模态融合综述
MAGIC 95
深度学习多模态融合
0前言本篇文章主要想对目前处于探索阶段的3D目标检测中多模态融合的方法做一个简单的综述,主要内容为对目前几篇几篇研究工作的总结和对这个研究方面的一些思考。在前面的一些文章中,笔者已经介绍到了多模态融合的含义是将多种传感器数据融合。在3D目标检测中,目前大都是将lidar和image信息做融合。在上一篇文章中,笔者介绍到了目前主要的几种融合方法,即early-fusion,deep-fusion和l
- PyTorch深度强化学习路径规划, SAC-Auto路径规划, Soft Actor-Critic算法, SAC-pytorch,激光雷达Lidar避障,激光雷达仿真模拟,Adaptive-SAC附
Matlab大师兄
pytorch算法人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍在日益复杂的自主系统领域,路径规划作为核心功能,其重要性不言而喻。尤其在动态且不确定的环境中,如何为移动平台(如自动驾驶车辆、无人机或机器人)生成安全、高效且最优的路径,是一
- 激光雷达 + 视觉相机:高精度位姿测量方案详解
ScilogyHunter
航天器交会对接位姿测量
激光雷达+视觉相机:高精度位姿测量方案详解引言在航天器交会对接、自动驾驶、机器人导航等领域,位姿(位置+姿态)测量的精度和鲁棒性至关重要。单一的传感器(如激光雷达或视觉相机)往往难以满足复杂场景的需求,而激光雷达(Lidar)+视觉相机的融合方案凭借各自的优势互补,成为高精度位姿测量的主流方案。本文将详细解析该方案的核心特点、实现要点及关键技术,并结合实际应用案例进行说明。1.方案特点(1)优势互
- Python搞定自动驾驶实时数据分析,这套方案你值得拥有!
Echo_Wish
Python!实战!python自动驾驶数据分析
Python搞定自动驾驶实时数据分析,这套方案你值得拥有!今天咱们聊聊如何用Python构建一个自动驾驶实时数据分析系统,这不仅是技术活儿,更是保证车辆安全与性能的中枢神经。整个系统如何设计?如何实时处理和分析多源数据?还有关键的代码示例给你,帮你理清思路,看到整个技术栈的全貌。一、为什么自动驾驶离不开实时数据分析?自动驾驶汽车配备了成百上千个传感器,比如:摄像头捕获环境图像激光雷达(LiDAR)
- 最新Lidar激光点云数据处理及可视化软件汇总
刘一哥GIS
《点云处理与建模应用》arcgis刘一哥点云pix4d点云分类
《点云数据处理与应用专栏》介绍:讲述目前最先进点云数据采集手段(三维激光扫描仪、无人机倾斜摄影测量、激光雷达Lidar等)、点云数据后处理软件(CloudCompare、Pix4D、Lidar360、PCL库、Globalmapper等)的实验操作教程,适用于在校学生、老师及三维建模从业者。严重声明:本文由CSDN博主[刘一哥GIS]原创,原文地址:https://geostorm.blog.cs
- 【平面波导外腔激光器专题系列】用于光纤传感的低噪声PLC外腔窄线宽激光器
见合八方
信息与通信网络
----翻译自MazinAlalusi等人的文章摘要高性价比的1550nmDWDM平面外腔(PLANEX)激光器是干涉测量、布里渊、LIDAR和其他光传感应用的最佳选择。其线宽,散粒噪声限制为>500kHz。不存在光纤激光器典型的RIN峰值,更适合声学和地震传感干涉测量。与基于FBG的激光器(ECL和光纤激光器)相比,PLANEX腔坚固耐用且本质稳定,激光器的可靠性已通过Telcordia认证,集
- 常用表示三维点云数据的文本格式——obj、ply、xyz...
hunjinYang
三维点云建模计算机视觉
1.xyz文件.xyz文件格式是一种常用于表示三维点云数据的简单文本格式,通常用于存储3D坐标(x,y,z)信息。它在领域如地理信息系统(GIS)、计算机图形学、3D扫描、激光雷达(LiDAR)等领域非常常见,尤其适合表示点云或散列的3D数据集。.xyz文件格式非常简单,只存储每个点的坐标信息,因此不具备颜色、法线或其他属性的描述。1.1格式结构.xyz文件通常是纯文本文件,每一行表示一个三维点的
- ADAS感知系统硬件和解决方案供应商国外厂家介绍
A阿司匹林
ADAS自动驾驶人工智能自动驾驶机器学习
随着智能驾驶技术的不断进步,自动驾驶与高级驾驶辅助系统(ADAS)已经成为现代汽车发展的关键趋势。为了实现对周围环境的精准感知,ADAS系统依赖于各类硬件传感器,包括摄像头、雷达、激光雷达(LiDAR)、超声波传感器等。此外,ADAS的核心功能还依赖于多传感器数据融合、感知算法与高效的计算平台。因此,ADAS硬件与解决方案的供应商在整个智能驾驶生态系统中扮演着重要的角色。本文将深入探讨主要ADAS
- 华为Cangjie编程技术深度解析(续篇1)
conkl
探索未来开发范式华为cangjie
华为Cangjie编程技术深度解析(续篇)第六章分布式运行时深度剖析6.1设备虚拟化引擎Cangjie设备抽象层(DAL)原理//设备能力声明式描述@DeviceProfile(id="AGV-0023",capabilities={mobility:{speed:1.5m/s,payload:50kg},sensors:[lidar,thermal]},constraints=@PowerPol
- 无人机精准降落与避障模块技术解析
云卓SKYDROID
无人机人工智能科普航电系统云卓科技避障降落模块
一、运行方式1.多模态感知融合模块通过多传感器协同工作,实时采集下方环境数据:视觉摄像头:捕捉地面特征或预设标记(如二维码、AR标签)实现厘米级定位。超声波/ToF(飞行时间)传感器**:短距离(0.1~5米)障碍物探测,抗光照干扰。激光雷达(LiDAR):高精度地形建模,适用于无标记场景。IMU(惯性测量单元):补偿无人机动态晃动,确保数据稳定性。2.避障与降落的动态切换避障模式:无人机悬停或飞
- Python在自动驾驶数据清洗中的应用
Echo_Wish
Python!实战!python自动驾驶开发语言
Python在自动驾驶数据清洗中的应用在自动驾驶领域,数据是算法的燃料。高质量的数据意味着更精准的模型,更稳定的驾驶体验。然而,原始数据通常充满噪声、缺失值、不一致格式,甚至有异常点,这些都会严重影响自动驾驶系统的可靠性。因此,数据清洗是一道绕不开的关卡。一、自动驾驶数据的特点自动驾驶涉及多种传感器数据,例如:LiDAR点云数据(三维空间信息)摄像头图像数据(视觉感知)IMU惯性传感器数据(车辆动
- ubuntu18.04上编译R3live
Herres
计算机视觉ubuntu
前言R3live是香港大学Mars实验室提出的一种实时的、激光雷达-惯性-视觉融合的SLAM系统,这篇博客主要记录本人配置R3live环境、编译、运行的过程。R3liveGithub页面:GitHub-hku-mars/r3live:ARobust,Real-time,RGB-colored,LiDAR-Inertial-Visualtightly-coupledstateEstimationan
- 跑通华科开源激光雷达-视觉-惯性SLAM:SR-LIVO
半熟芝士味
LIVOSLAMSLAMROSslamubuntu
跑通华科开源激光雷达-视觉-惯性SLAM:SR-LIVO1.介绍SR-LIVO(LiDAR-Inertial-VisualOdometryandMappingSystemwithSweepReconstruction)是基于R3Live框架设计的。我们采用扫描重建方法将重建的扫描与图像时间戳对齐。这使得LIO模块能够准确地确定所有成像时刻的状态,从而提高姿态精度和处理效率。在SR-LIVO中,ES
- 数字孪生市场格局生变:中国2025年规模214亿,工业制造领域占比超40%
常州北格数字孪生
数字孪生技术瓶颈数据治理安全漏洞区块链
一、技术深度解析:数字孪生的核心技术栈与演进1.从镜像到自治:数字孪生技术架构跃迁三维重建突破:LiDAR点云精度达±2cm,无人机测深刷新频率5Hz,支撑杭州城市大脑内涝预警模型提前6小时预测。AI算法融合:LSTM时序预测误差率<3%,强化学习使西门子工厂能源流模拟优化能耗下降18%。边缘计算赋能:特斯拉虚拟电厂响应速度达秒级,5G+边缘AI实现设备故障预警响应时间缩短。2.开发者必知:数字孪
- 基于ROS2机器人建图工具包Gmapping
研创通之逍遥峰
机器人自动驾驶人工智能
在ROS2中使用Gmapping进行2DSLAM(即时定位与地图构建)的完整指南如下:1.Gmapping简介Gmapping是经典的基于粒子滤波的2DSLAM算法,依赖:激光雷达(LiDAR)数据机器人里程计(Odometry)适用于低计算资源的场景ROS2现状:官方gmapping仅支持ROS1,但可通过ROS1Bridge或替代方案(如Cartographer)在ROS2中使用。2.ROS2
- 【自动驾驶仿真在做什么——初学者总结(陆续补充)】
路有瑶台
智能驾驶学习自动驾驶自动驾驶仿真
文章目录基础概念自动驾驶级别再稍提一下ODD是什么?车载网络架构、模块和协议CAN(面试必问)2.2.2CAN总线的组成自动驾驶仿真分类软件在环仿真硬件仿真仿真究竟难在哪?关于lidar和radar区别一些名词解释最近也是学习自动驾驶仿真相关知识,习惯去总结一下,方便自己回顾和总结,主要包括了自动驾驶框架和一些关于仿真方面的简单介绍,给想了解车企自动驾驶岗位的同学做一个初步普及,有写的不对的地方欢
- SLAM(同步定位与建图)技术的步骤解析
具身小站
人工智能技术人工智能算法SLAM定位导航后端优化回环检测点云匹配
SLAM算法框架分为传感器采集数据,前端匹配,后端非线性优化,回环检测以及建图等。对于不同的SLAM算法,对基本框架进行取舍和更改,大体结构没有任何变化,步骤展开如下:1.传感器数据采集现代SLAM系统已突破单一传感器的局限,形成多模态感知融合体系。激光雷达(LiDAR)通过905nm/1550nm波长激光束实现毫米级测距精度,视觉传感器从单目相机发展到双目立体视觉系统,IMU(惯性测量单元)能实
- 抽象工厂模式及其在自动驾驶中的应用举例(c++代码实现)
zhaoyqcsdn
设计模式c++笔记设计模式经验分享
模式定义抽象工厂模式(AbstractFactoryPattern)是一种创建型设计模式,用于封装一组具有共同主题的独立对象创建过程。该模式通过提供统一接口创建相关对象家族,而无需指定具体实现类,特别适合需要保证系统组件兼容性的自动驾驶硬件平台适配场景。自动驾驶应用场景在自动驾驶硬件集成中常见的应用场景:多传感器套件适配:兼容不同厂商的LiDAR+Camera+Radar组合硬件平台移植:适配不同
- 无人机避障与目标识别技术分析!
云卓SKYDROID
无人机人工智能科普高科技云卓科技激光避障
一、无人机避障技术1.技术实现方式传感器融合:视觉传感(RGB/双目/红外相机):基于SLAM(同步定位与地图构建)实现环境建模,但依赖光照条件。激光雷达(LiDAR):高精度点云建模,但成本高、功耗大,小型无人机难以集成。超声波雷达:短距离(5-10米)低成本避障,但易受环境噪声干扰。毫米波雷达:穿透性强(雨雾环境适用),但分辨率低于激光雷达。算法核心:路径规划:A、RRT(快速扩展随机树)等算
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f