整数划分算法原理与实现

整数划分问题是将一个正整数n拆成一组数连加并等于n的形式,且这组数中的最大加数不大于n。
    如6的整数划分为
   
    6
    5 + 1
    4 + 2, 4 + 1 + 1
    3 + 3, 3 + 2 + 1, 3 + 1 + 1 + 1
    2 + 2 + 2, 2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1
    1 + 1 + 1 + 1 + 1 + 1
   
    共11种。下面介绍一种通过递归方法得到一个正整数的划分数。
   
    递归函数的声明为 int split(int n, int m);其中n为要划分的正整数,m是划分中的最大加数(当m > n时,最大加数为n),
    1 当n = 1或m = 1时,split的值为1,可根据上例看出,只有一个划分1 或 1 + 1 + 1 + 1 + 1 + 1
    可用程序表示为if(n == 1 || m == 1) return 1;
   
    2 下面看一看m 和 n的关系。它们有三种关系
    (1) m > n
    在整数划分中实际上最大加数不能大于n,因此在这种情况可以等价为split(n, n);
    可用程序表示为if(m > n) return split(n, n);   
    (2) m = n
    这种情况可用递归表示为split(n, m - 1) + 1,从以上例子中可以看出,就是最大加
    数为6和小于6的划分之和
    用程序表示为if(m == n) return (split(n, m - 1) + 1);
    (3) m < n
    这是最一般的情况,在划分的大多数时都是这种情况。
    从上例可以看出,设m = 4,那split(6, 4)的值是最大加数小于4划分数和整数2的划分数的和。
    因此,split(n, m)可表示为split(n, m - 1) + split(n - m, m)
   

    根据以上描述,可得源程序如下:

#include


   int split(int n, int m)
   {
      if(n < 1 || m < 1) return 0;
      if(n == 1 || m == 1) return 1;
      if(n < m) return split(n, n);
      if(n == m) return (split(n, m - 1) + 1);
      if(n > m) return (split(n, m - 1) + split((n - m), m));
  }


int main()
{
     printf("12的划分数: %d", split(6, 6));
    return 0;
}


你可能感兴趣的:(算法)